期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv5的复杂路况密集行人检测方法
1
作者 孙睿琦 窦修超 +2 位作者 李志华 蒋雪梅 孙宇豪 《计算机与现代化》 2024年第5期85-91,共7页
针对复杂街景环境下行人检测精度低的问题,基于YOLOv5网络,提出一种改进的行人检测网络YOLO-BEN。该网络将残差分级,利用连接模块Res2Net与C3模块进行融合,加强细粒度级别的多尺度特征表示。采用双层路由注意力模块,构建和修剪区域级有... 针对复杂街景环境下行人检测精度低的问题,基于YOLOv5网络,提出一种改进的行人检测网络YOLO-BEN。该网络将残差分级,利用连接模块Res2Net与C3模块进行融合,加强细粒度级别的多尺度特征表示。采用双层路由注意力模块,构建和修剪区域级有向图,在路由区域的联合中应用细粒度的注意力,使网络具备动态的查询感知稀疏性,提高对模糊图像的特征提取能力。改进原网络Neck部分进一步保留局部角区域信息,弥补被遮挡行人的信息丢失问题。使用NWD度量与原有的IoU度量形成联合损失函数,同时增加小目标检测头,提高远距离行人检测效果。实验中该方法在自制数据集和部分WiderPerson数据集上取得了较好的效果,改进后比原始网络的精确率、召回率、平均精度分别提高了2.8、4.3、3.9个百分点。 展开更多
关键词 行人检测 多尺度特征 双层路由注意力机制 角区域特征 小目标检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部