异常检测一直是数据挖掘领域的重要工作之一。基于欧氏距离的异常检测算法在应用于高维数据时存在检测精度无法保证和运行时间过长的问题。在基于角度方差的异常检测算法基础上,提出了一种多层次的高维数据异常检测算法(hybrid outlier ...异常检测一直是数据挖掘领域的重要工作之一。基于欧氏距离的异常检测算法在应用于高维数据时存在检测精度无法保证和运行时间过长的问题。在基于角度方差的异常检测算法基础上,提出了一种多层次的高维数据异常检测算法(hybrid outlier detection algorithm based on angle variance for high-dimensional data,HODA)。算法结合了粗糙集理论,分析属性之间的相互作用以排除影响较小的属性;通过分析各维度上的数据分布,对数据进行网格划分,寻找可能存在异常点的网格;最后对可能存在异常点的网格计算角度方差异常因子,筛选异常数据。实验结果表明,与ABOD、Fast VOA和经典LOF算法相比,HODA算法在保证精测精度的前提下,运行时间显著缩短,且可扩展性强。展开更多
A novel approach is proposed for correcting command points and compressing discrete axis commands into a C2 continuous curve.The relationship between values of rotation angles and tool posture errors is firstly analyz...A novel approach is proposed for correcting command points and compressing discrete axis commands into a C2 continuous curve.The relationship between values of rotation angles and tool posture errors is firstly analyzed.A segmentation method based on values of rotation angles and lengths of adjacent points is then used to subdivide these command points into accuracy regions and smoothness regions.Since tool center points generated by CAD/CAM system are usually lying in the space that is apart from the desired curve within a tolerance distance,and the corresponding tool orientation vector may change a lot while the trajectory length of the tool center point is quite small,directly machining with such points will lead to problems of coarse working shape and long machining time.A correction method for command points is implemented so that good processing effectiveness can be achieved.Also,the quintic spline is used for compressing discrete command points into a C2 continuous smooth curve.The machining experiment is finally conducted to demonstrate the effectiveness of the proposed algorithm.展开更多
文摘异常检测一直是数据挖掘领域的重要工作之一。基于欧氏距离的异常检测算法在应用于高维数据时存在检测精度无法保证和运行时间过长的问题。在基于角度方差的异常检测算法基础上,提出了一种多层次的高维数据异常检测算法(hybrid outlier detection algorithm based on angle variance for high-dimensional data,HODA)。算法结合了粗糙集理论,分析属性之间的相互作用以排除影响较小的属性;通过分析各维度上的数据分布,对数据进行网格划分,寻找可能存在异常点的网格;最后对可能存在异常点的网格计算角度方差异常因子,筛选异常数据。实验结果表明,与ABOD、Fast VOA和经典LOF算法相比,HODA算法在保证精测精度的前提下,运行时间显著缩短,且可扩展性强。
基金supported by the National Key Basic Research and Development Projects under Grant No.2011CB302400
文摘A novel approach is proposed for correcting command points and compressing discrete axis commands into a C2 continuous curve.The relationship between values of rotation angles and tool posture errors is firstly analyzed.A segmentation method based on values of rotation angles and lengths of adjacent points is then used to subdivide these command points into accuracy regions and smoothness regions.Since tool center points generated by CAD/CAM system are usually lying in the space that is apart from the desired curve within a tolerance distance,and the corresponding tool orientation vector may change a lot while the trajectory length of the tool center point is quite small,directly machining with such points will lead to problems of coarse working shape and long machining time.A correction method for command points is implemented so that good processing effectiveness can be achieved.Also,the quintic spline is used for compressing discrete command points into a C2 continuous smooth curve.The machining experiment is finally conducted to demonstrate the effectiveness of the proposed algorithm.