The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the ...The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.展开更多
Multistage centrifugal impellers with four different skew angles were investigated by using computational fluid dynamics.The purpose of this work is to investigate the influences of lean angle at the blade tip of the ...Multistage centrifugal impellers with four different skew angles were investigated by using computational fluid dynamics.The purpose of this work is to investigate the influences of lean angle at the blade tip of the impeller inlet.Four variations of lean angles,that is,8°,10°,15° and 20°,were made at first stage impeller.Reynolds Average Navier Stokes equation was used in simulation together with a shear?stress transport(SST) k-w turbulence model and mixing-plane approach,respectively.Three dimensional fluid flows were simplified using periodic model to reduce the computational cost and time required.A good performance was expected that the secondary flow can be effectively reduced in the flow passage of the impeller without excessive increase in manufacturing cost caused by the secondary flow.The results show that secondary flow affects the main flow intricately to form vortices or having non-uniform velocity in the flow passage,which in turn results in substantial fluid energy loss not only in the impeller but also in the guide vane downstream of impeller.The numerical solutions were performed and allowed the optimum design and operating conditions to be obtained.展开更多
A novel algorithm to voxelize 3D mesh models with gray levels is presented in this paper.The key innovation of our method is to decide the gray level of a voxel according to the total area of all surfaces contained by...A novel algorithm to voxelize 3D mesh models with gray levels is presented in this paper.The key innovation of our method is to decide the gray level of a voxel according to the total area of all surfaces contained by it.During the preprocessing stage,a set of voxels in the extended bounding box of each triangle is established.Then we travel each triangle and compute the areas between it and its set of voxels one by one.Finally,each voxel is arranged a discrete gray level from 0 to 255.Experiments show that our algorithm gets a comparatively perfect result compared with the prevenient ones and approaches the original models in a more accurate way.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.41272297,41401195)the Applied Basic Research Fund of the Science and Technology Department of Sichuan Province (2014JY0121)the Key Research Fund of the Education Department of Sichuan Province (14ZA0095)
文摘The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.
基金Project(NRF-2010-013-D00007) supported by the National Research Foundation of KoreaWork finacially supported by the 2010 Research Professor Fund of Gyeongsang National University,Korea
文摘Multistage centrifugal impellers with four different skew angles were investigated by using computational fluid dynamics.The purpose of this work is to investigate the influences of lean angle at the blade tip of the impeller inlet.Four variations of lean angles,that is,8°,10°,15° and 20°,were made at first stage impeller.Reynolds Average Navier Stokes equation was used in simulation together with a shear?stress transport(SST) k-w turbulence model and mixing-plane approach,respectively.Three dimensional fluid flows were simplified using periodic model to reduce the computational cost and time required.A good performance was expected that the secondary flow can be effectively reduced in the flow passage of the impeller without excessive increase in manufacturing cost caused by the secondary flow.The results show that secondary flow affects the main flow intricately to form vortices or having non-uniform velocity in the flow passage,which in turn results in substantial fluid energy loss not only in the impeller but also in the guide vane downstream of impeller.The numerical solutions were performed and allowed the optimum design and operating conditions to be obtained.
基金the National Natural Science Foundation of China (60903111)
文摘A novel algorithm to voxelize 3D mesh models with gray levels is presented in this paper.The key innovation of our method is to decide the gray level of a voxel according to the total area of all surfaces contained by it.During the preprocessing stage,a set of voxels in the extended bounding box of each triangle is established.Then we travel each triangle and compute the areas between it and its set of voxels one by one.Finally,each voxel is arranged a discrete gray level from 0 to 255.Experiments show that our algorithm gets a comparatively perfect result compared with the prevenient ones and approaches the original models in a more accurate way.