In order to find out the influence of the instability of angular velocity of the rotating carrier itself on the stability of silicon micromachined gyroscope, the digital models for relative error of the high and low d...In order to find out the influence of the instability of angular velocity of the rotating carrier itself on the stability of silicon micromachined gyroscope, the digital models for relative error of the high and low damping gyroscope's output signal are given respectively, based on the motion equations of the silicon micromachined gyroscope. Theory proves that the output signal error of the silicon micromachined sensor is mainly caused by the instability of damping factor and the angular velocity of the rotating carrier itself. The experiment result indicates that the error of proportionality coefficient of output voltage which is caused by the instability of the angular velocity of the rotating carrier itself reaches to 4.1 %. Theoretical demonstration and experimental verification show that the instability of angular velocity of the rotating carrier itself has an important effect on the stability of low damping silicon micromachined gyroscope.展开更多
The objective of this work is to improve the measurement accuracy of a gyroscope on a angular motion base with a simple adaptive filter scheme.Two main topics are highlighted in this work.The first topic is to show bu...The objective of this work is to improve the measurement accuracy of a gyroscope on a angular motion base with a simple adaptive filter scheme.Two main topics are highlighted in this work.The first topic is to show building a dual-process model employed for the conventional Kalman filter.The second topic is to show developing a modified noise adaptive algorithm when measurement noise and process noise are unknown.The experimental results are presented to show that the simple adaptive filtering scheme outperforms the other conventional scheme in this paper in terms of noise reduction.展开更多
基金The author would like to thank the Nature Science Foundation of China (Grant No.60627001)the Beijing Key Laboratory for Sensor(No.KM200810772001)
文摘In order to find out the influence of the instability of angular velocity of the rotating carrier itself on the stability of silicon micromachined gyroscope, the digital models for relative error of the high and low damping gyroscope's output signal are given respectively, based on the motion equations of the silicon micromachined gyroscope. Theory proves that the output signal error of the silicon micromachined sensor is mainly caused by the instability of damping factor and the angular velocity of the rotating carrier itself. The experiment result indicates that the error of proportionality coefficient of output voltage which is caused by the instability of the angular velocity of the rotating carrier itself reaches to 4.1 %. Theoretical demonstration and experimental verification show that the instability of angular velocity of the rotating carrier itself has an important effect on the stability of low damping silicon micromachined gyroscope.
文摘The objective of this work is to improve the measurement accuracy of a gyroscope on a angular motion base with a simple adaptive filter scheme.Two main topics are highlighted in this work.The first topic is to show building a dual-process model employed for the conventional Kalman filter.The second topic is to show developing a modified noise adaptive algorithm when measurement noise and process noise are unknown.The experimental results are presented to show that the simple adaptive filtering scheme outperforms the other conventional scheme in this paper in terms of noise reduction.