A two dimensional Bernstein operators on C(S) is given by B n(f;x,y)=nk=0kj=0f(jn,kn)P n,k,j (x,y) where S{(x,y)|0≤x≤y≤1},f∈C(S),P n,k,j (x,y)=n kk jx j(y-x) k-j (1-y) n-k and the aproximation equivalence the...A two dimensional Bernstein operators on C(S) is given by B n(f;x,y)=nk=0kj=0f(jn,kn)P n,k,j (x,y) where S{(x,y)|0≤x≤y≤1},f∈C(S),P n,k,j (x,y)=n kk jx j(y-x) k-j (1-y) n-k and the aproximation equivalence theorem is obtained.展开更多
讨论多角形域上椭圆混合边值问题Δu=finΩ,u=0onΓ1, u n=0onΓ2,的正则性,这里边界Γ=Γ1+Γ2,且Γ1有正测度.若f∈L2(Ω),则解u∈Hρ(Ω),ρ=1+min(12α0,1β0)-ε,ε>0,其中α0π是Γ1与Γ2的所有交接点处的最大内角,而β0π是Γ...讨论多角形域上椭圆混合边值问题Δu=finΩ,u=0onΓ1, u n=0onΓ2,的正则性,这里边界Γ=Γ1+Γ2,且Γ1有正测度.若f∈L2(Ω),则解u∈Hρ(Ω),ρ=1+min(12α0,1β0)-ε,ε>0,其中α0π是Γ1与Γ2的所有交接点处的最大内角,而β0π是Γ1内或Γ2内角点处的最大内角.展开更多
文摘A two dimensional Bernstein operators on C(S) is given by B n(f;x,y)=nk=0kj=0f(jn,kn)P n,k,j (x,y) where S{(x,y)|0≤x≤y≤1},f∈C(S),P n,k,j (x,y)=n kk jx j(y-x) k-j (1-y) n-k and the aproximation equivalence theorem is obtained.
文摘讨论多角形域上椭圆混合边值问题Δu=finΩ,u=0onΓ1, u n=0onΓ2,的正则性,这里边界Γ=Γ1+Γ2,且Γ1有正测度.若f∈L2(Ω),则解u∈Hρ(Ω),ρ=1+min(12α0,1β0)-ε,ε>0,其中α0π是Γ1与Γ2的所有交接点处的最大内角,而β0π是Γ1内或Γ2内角点处的最大内角.