本文基于磁流体动力学方程组,在保证磁场散度为零的条件下,采用CTU+CT (corner transport upwind+constrained transport)算法,对有无磁场控制下激波与重质或轻质三角形气柱相互作用过程进行数值研究.结果表明:无论有无磁场,两气柱在激...本文基于磁流体动力学方程组,在保证磁场散度为零的条件下,采用CTU+CT (corner transport upwind+constrained transport)算法,对有无磁场控制下激波与重质或轻质三角形气柱相互作用过程进行数值研究.结果表明:无论有无磁场,两气柱在激波冲击-下均具有完全不同的波系结构和射流现象.其中,入射激波与重气柱发生常规折射,形成介质射流,而与轻气柱作用则发生非常规折射,形成反相空气射流.无磁场时,气柱在激波冲击下,产生Richtmyer-Meshkov和Kelvin-Helmholtz不稳定性,界面出现次级涡序列,重气柱上下角卷起形成主涡对,轻气柱空气射流穿过下游界面后形成偶极子涡.施加横向磁场后,次级涡序列、主涡对以及偶极子涡均消失.进一步研究表明,在磁场作用下,洛伦兹力将不稳定性诱导产生的涡量向界面两侧的Alfven波上输运,减少界面涡量沉积,抑制界面卷起失稳.最终,涡量沿界面两侧形成相互远离的涡层,界面不稳定性得到控制.此外,定量分析表明磁场能加快两气柱上游界面的运动,抑制下游界面的运动,且对轻气柱的控制效果更好.展开更多
Indium tin oxide(ITO)thin films were prepared using the technique of rf-sputtering with oblique angle deposition(OAD).The films were as-deposited and thermally treated at 250℃.The combination of substrate inclination...Indium tin oxide(ITO)thin films were prepared using the technique of rf-sputtering with oblique angle deposition(OAD).The films were as-deposited and thermally treated at 250℃.The combination of substrate inclination and annealing was used for modifying morphological and structural properties that lead to changes of the optical properties.The resulting films show morphology of tilted nanocolumn,fissures among columns,and structural changes.The as-deposited films are structurally disordered with an amorphous component and the annealed films are crystallized and more ordered and the film diffractograms correspond to the cubic structure of In2O3.The refractive index could be modified up to 0.3 in as-deposited films and up to 0.15 in annealed films as functions of the inclination angle of the nanocolumns.Similarly,the band gap energy increases up to about 0.4 eV due to the reduction of the microstrain distribution.It is found that the microstrain distribution,which is related to lattice distortions,defects and the presence of fissures in the films,is the main feature that can be engineered through morphological modifications for achieving the adjustment of the optical properties.展开更多
The dynamic behavior of the moving liquid column coalescing with a sessile droplet in triangular microchannels is numerically investigated by using coupled volume of fluid with level set interface tracking method impl...The dynamic behavior of the moving liquid column coalescing with a sessile droplet in triangular microchannels is numerically investigated by using coupled volume of fluid with level set interface tracking method implemented in ANSYS Fluent 14.5 in conjunction with the continuum surface force model. It is found that for both hydrophobic and hydrophilic microchannels, the coalescence between the moving liquid column and droplet can accelerate the original liquid column movement as a result of the induced curvature that lowers the liquid pressure at the interface. As compared to the rectangular microchannel with the same hydraulic diameter, the triangular microchannel exhibits smaller velocity increment ratio because of stronger viscous effect. Simulation results also reveal that the velocity increment ratio increases with the contact angle in hydrophobic microchannels, but it is reverse in the hydrophilic microchannels. The effects of the droplet size, lengthways and transverse positions are also investigated in this work. It is shown that larger droplet and smaller distance between the droplet and inlet or the substrate center can result in larger velocity increment ratio as a result of higher surface energy and lower viscous dissipation energy, respectively. The results obtained in this study create a solid theoretical foundation for designingand optimizing microfluidic devices encountering such a typical phenomenon.展开更多
文摘本文基于磁流体动力学方程组,在保证磁场散度为零的条件下,采用CTU+CT (corner transport upwind+constrained transport)算法,对有无磁场控制下激波与重质或轻质三角形气柱相互作用过程进行数值研究.结果表明:无论有无磁场,两气柱在激波冲击-下均具有完全不同的波系结构和射流现象.其中,入射激波与重气柱发生常规折射,形成介质射流,而与轻气柱作用则发生非常规折射,形成反相空气射流.无磁场时,气柱在激波冲击下,产生Richtmyer-Meshkov和Kelvin-Helmholtz不稳定性,界面出现次级涡序列,重气柱上下角卷起形成主涡对,轻气柱空气射流穿过下游界面后形成偶极子涡.施加横向磁场后,次级涡序列、主涡对以及偶极子涡均消失.进一步研究表明,在磁场作用下,洛伦兹力将不稳定性诱导产生的涡量向界面两侧的Alfven波上输运,减少界面涡量沉积,抑制界面卷起失稳.最终,涡量沿界面两侧形成相互远离的涡层,界面不稳定性得到控制.此外,定量分析表明磁场能加快两气柱上游界面的运动,抑制下游界面的运动,且对轻气柱的控制效果更好.
基金Jointly Funded Project(61179055)of Chinese Civil Aviation AuthorityNational Natural Science Foundation of China+1 种基金Major State Basic Research Development Program(2014CB921300)Talent Grant(5030450104)of Educational Commission of Guangdong Province,China
基金supported by the Project No.CB/2012/178748 CONACYT/México
文摘Indium tin oxide(ITO)thin films were prepared using the technique of rf-sputtering with oblique angle deposition(OAD).The films were as-deposited and thermally treated at 250℃.The combination of substrate inclination and annealing was used for modifying morphological and structural properties that lead to changes of the optical properties.The resulting films show morphology of tilted nanocolumn,fissures among columns,and structural changes.The as-deposited films are structurally disordered with an amorphous component and the annealed films are crystallized and more ordered and the film diffractograms correspond to the cubic structure of In2O3.The refractive index could be modified up to 0.3 in as-deposited films and up to 0.15 in annealed films as functions of the inclination angle of the nanocolumns.Similarly,the band gap energy increases up to about 0.4 eV due to the reduction of the microstrain distribution.It is found that the microstrain distribution,which is related to lattice distortions,defects and the presence of fissures in the films,is the main feature that can be engineered through morphological modifications for achieving the adjustment of the optical properties.
基金supported by the National Natural Science Foundation of China(5122260351276208 and51325602)+1 种基金the Fundamental Research Funds for the Central Universities(CDJZR12148801)Program for New Century Excellent Talents in University(NCET-12-0591)
文摘The dynamic behavior of the moving liquid column coalescing with a sessile droplet in triangular microchannels is numerically investigated by using coupled volume of fluid with level set interface tracking method implemented in ANSYS Fluent 14.5 in conjunction with the continuum surface force model. It is found that for both hydrophobic and hydrophilic microchannels, the coalescence between the moving liquid column and droplet can accelerate the original liquid column movement as a result of the induced curvature that lowers the liquid pressure at the interface. As compared to the rectangular microchannel with the same hydraulic diameter, the triangular microchannel exhibits smaller velocity increment ratio because of stronger viscous effect. Simulation results also reveal that the velocity increment ratio increases with the contact angle in hydrophobic microchannels, but it is reverse in the hydrophilic microchannels. The effects of the droplet size, lengthways and transverse positions are also investigated in this work. It is shown that larger droplet and smaller distance between the droplet and inlet or the substrate center can result in larger velocity increment ratio as a result of higher surface energy and lower viscous dissipation energy, respectively. The results obtained in this study create a solid theoretical foundation for designingand optimizing microfluidic devices encountering such a typical phenomenon.