提出了一种基于兴趣点方向特征的图像拼接算法IPOF(Interest Point Orientation Feature),该算法利用Harris角检测器提取出两幅图像的兴趣点并为每个兴趣点分配一个主方向,采用方向相关系数法提取出初始匹配对,根据特征点之间的关系去...提出了一种基于兴趣点方向特征的图像拼接算法IPOF(Interest Point Orientation Feature),该算法利用Harris角检测器提取出两幅图像的兴趣点并为每个兴趣点分配一个主方向,采用方向相关系数法提取出初始匹配对,根据特征点之间的关系去除伪匹配对,得到两幅图像的对应兴趣点特征对从而确定变换参数,最后使用加权平均的方法融合图像。实验表明,该算法在图像间存在任意角度的旋转及平移的情形下,能有效地实现图像的平滑镶嵌。展开更多
In manufacture of precise optical products, it is important to inspect and classify the potential defects existing on the products’ surfaces after precise machining in order to obtain high quality in both functionali...In manufacture of precise optical products, it is important to inspect and classify the potential defects existing on the products’ surfaces after precise machining in order to obtain high quality in both functionality and aesthetics. The existing methods for detecting and classifying defects all are low accuracy or efficiency or high cost in inspection process. In this paper, a new inspection system based on machine vision has been introduced, which uses automatic focusing and image mosaic technologies to rapidly acquire distinct surface image, and employs Case-Based Reasoning(CBR)method in defects classification. A modificatory fuzzy similarity algorithm in CBR has been adopted for more quick and robust need of pattern recognition in practice inspection. Experiments show that the system can inspect surface diameter of 500mm in half an hour with resolving power of 0.8μm diameter according to digs or 0.5μm transverse width according to scratches. The proposed inspection principles and methods not only have meet manufacturing requirements of precise optical products, but also have great potential applications in other fields of precise surface inspection.展开更多
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60572152)陕西省自然科学基金(the NaturalScience Foundation of Shaanxi Province of China under Grant No.2005F26)。
文摘提出了一种基于兴趣点方向特征的图像拼接算法IPOF(Interest Point Orientation Feature),该算法利用Harris角检测器提取出两幅图像的兴趣点并为每个兴趣点分配一个主方向,采用方向相关系数法提取出初始匹配对,根据特征点之间的关系去除伪匹配对,得到两幅图像的对应兴趣点特征对从而确定变换参数,最后使用加权平均的方法融合图像。实验表明,该算法在图像间存在任意角度的旋转及平移的情形下,能有效地实现图像的平滑镶嵌。
文摘In manufacture of precise optical products, it is important to inspect and classify the potential defects existing on the products’ surfaces after precise machining in order to obtain high quality in both functionality and aesthetics. The existing methods for detecting and classifying defects all are low accuracy or efficiency or high cost in inspection process. In this paper, a new inspection system based on machine vision has been introduced, which uses automatic focusing and image mosaic technologies to rapidly acquire distinct surface image, and employs Case-Based Reasoning(CBR)method in defects classification. A modificatory fuzzy similarity algorithm in CBR has been adopted for more quick and robust need of pattern recognition in practice inspection. Experiments show that the system can inspect surface diameter of 500mm in half an hour with resolving power of 0.8μm diameter according to digs or 0.5μm transverse width according to scratches. The proposed inspection principles and methods not only have meet manufacturing requirements of precise optical products, but also have great potential applications in other fields of precise surface inspection.