期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于快速立体匹配的基本矩阵估计方法 被引量:3
1
作者 刘丁 赵豆 杨延西 《西安理工大学学报》 CAS 北大核心 2009年第1期1-7,共7页
借鉴Harris角点检测时角点自身的特点,提出了基于角特征与灰度相关并参考视差梯度约束的角点匹配方法,利用角特征值比值的约束条件,减少了大量的候选匹配点,提高了立体匹配的速度,实现了快速、准确的立体图像对的角点匹配。在此基础上,... 借鉴Harris角点检测时角点自身的特点,提出了基于角特征与灰度相关并参考视差梯度约束的角点匹配方法,利用角特征值比值的约束条件,减少了大量的候选匹配点,提高了立体匹配的速度,实现了快速、准确的立体图像对的角点匹配。在此基础上,进一步采用Hartley提出的改进八点算法,获得了高精度的基本矩阵。实验结果表明该方法具有较高的准确性和实时性,是一种快速有效的立体匹配基本矩阵估计方法。 展开更多
关键词 HARRIS点检测 角特征值 灰度相关 立体匹配 基本矩阵
下载PDF
The Distribution of Eigenvance of Product Diagonal Dominance Matrix 被引量:1
2
作者 杨益民 《Chinese Quarterly Journal of Mathematics》 CSCD 1992年第3期32-40,共9页
Let DD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(jj)|≥A_iA_j,i≠j,i,j∈N}.PD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(kk)|≥A_iA_jA_k,i≠j≠k,i,j,k∈N}. In this paper,we show DD_0(R)PD_0(R),and the conditions under which the nu... Let DD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(jj)|≥A_iA_j,i≠j,i,j∈N}.PD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(kk)|≥A_iA_jA_k,i≠j≠k,i,j,k∈N}. In this paper,we show DD_0(R)PD_0(R),and the conditions under which the numbers of eigen vance of A∈PD_0(R)\DD_0(R)are equal to the numbers of a_(ii),i∈N in positive and negative real part respectively.Some couter examples are given which present the condnions can not be omitted. 展开更多
关键词 MATRIX diagonal dominance EIGENVALUE DISTRIBUTION
下载PDF
Second Reference State and Complete Eigenstates of Open XYZ Chain
3
作者 冯俊 陈曦 +4 位作者 郝昆 侯伯宇 石康杰 孙成一 杨文力 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第7期55-60,共6页
The second reference state of the open XYZ spin chain with non-diagonal boundary terms is studied. The associated Bethe states exactly yield the second set of eigenvalues proposed recently by functional Bethe Ansatz.
关键词 algebraic Bethe ansatz XYZ spin chain
下载PDF
Extremal hexagonal chains concerning largest eigenvalue 被引量:6
4
作者 张莲珠 田丰 《Science China Mathematics》 SCIE 2001年第9期1089-1097,共9页
In this paper, we define a roll-attaching operation of a hexagonal chain, and prove Gutman's conjecture affirmatively by using the operation. The idea of the proof is also applicable to the results concerning extr... In this paper, we define a roll-attaching operation of a hexagonal chain, and prove Gutman's conjecture affirmatively by using the operation. The idea of the proof is also applicable to the results concerning extremal hexagonal chains for the Hosoya index and Merrifield-Simmons index. 展开更多
关键词 hexagonal chain helicene chain EIGENVALUE roll-attaching operation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部