期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
角膜神经显微图像的自适应渐晕校正
1
作者 李天宇 李光旭 +2 位作者 张琛 李方烃 李德衡 《光学精密工程》 EI CAS CSCD 北大核心 2022年第20期2479-2488,共10页
通过拼接角膜神经图像可以减小显微图像视场小的影响。由于显微图像存在渐晕效果,拼接图像会在拼接处产生伪影,影响医生诊断。为解决拼接图像的渐晕伪影问题,提出了一种通过非线性多项式函数建模进行图像渐晕校正的方法。首先,对单张角... 通过拼接角膜神经图像可以减小显微图像视场小的影响。由于显微图像存在渐晕效果,拼接图像会在拼接处产生伪影,影响医生诊断。为解决拼接图像的渐晕伪影问题,提出了一种通过非线性多项式函数建模进行图像渐晕校正的方法。首先,对单张角膜神经图像建立渐晕模型,设置符合渐晕物理性质的约束条件,利用L-M优化算法对渐晕模型参数进行迭代优化。在每次迭代优化过程中,计算对数信息熵,对当前渐晕模型的校正效果进行判断,防止图像过度校正。迭代优化结束后,将渐晕模型反向补偿原图像,完成渐晕校正处理。通过对比校正前后的拼接图像,校正后图像在拼接处无明显的渐晕伪影。实验测试5组不同患者的图像,校正后图像MSE、PSNR、SSIM评估指标平均值分别达到0.0042、72.2251 dB、0.9600,具有最佳的校正效果。本文算法的校正效果明显优于其他同类算法的校正效果。该方法能够有效地对角膜图像渐晕效果进行校正,无须提前设置固定的相机和环境亮度参数。校正后图像拼接效果良好,可获得更加准确、清晰、视野范围大的角膜神经拼接图像。 展开更多
关键词 计算机视觉 角膜神经显微图像 渐晕校正 共聚焦 对数信息熵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部