期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一类次线性时变常微分方程 被引量:1
1
作者 杨国武 肖新平 桂预凤 《武汉理工大学学报(交通科学与工程版)》 北大核心 2002年第5期579-580,595,共3页
研究了一类一阶次线性常微分方程解唯一与不唯一的条件以及解的性质和解在初始时刻的渐近性质
关键词 次线性常微分方程 最大 最小 解不唯一 性质
下载PDF
统计线性模型(Ⅳ)
2
作者 漠草 《数理统计与管理》 1985年第4期33-37,共5页
关键词 正规方程 统计线性模型 最小二乘估计 可估 线性表出 线性方程组 解不唯一 列向量 行向量 单因素设计
下载PDF
The Uniqueness and Nonexistent Results for Some Nonlinear Partial Equations on Riemannian Manifolds
3
作者 李兴校 曹林芬 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第3期344-351,共8页
The paper studies a class of nonlinear elliptic partial differential equations on a compact Riemannian manifold (M,g) with some curvature restriction. The authors try to prove some uniqueness and nonexistent results... The paper studies a class of nonlinear elliptic partial differential equations on a compact Riemannian manifold (M,g) with some curvature restriction. The authors try to prove some uniqueness and nonexistent results for the positive solutions of the equations concerned. 展开更多
关键词 compact Riemannian manifold nonlinear elliptic equation positive solution uniqueness and nonexistance
下载PDF
Some Structures of Irreducible Polynomials over a Unique Factorization Domain R 被引量:4
4
作者 王瑞 《Journal of Mathematical Research and Exposition》 CSCD 1999年第2期367-373,共7页
In this paper, we give the conception of implicit congruence and nonimplicit congruence in a unique factorization domain R and establish some structures of irreducible polynomials over R . A classical result, E... In this paper, we give the conception of implicit congruence and nonimplicit congruence in a unique factorization domain R and establish some structures of irreducible polynomials over R . A classical result, Eisenstein′s criterion, is generalized. 展开更多
关键词 unique factorization domain prime element nonimplicit congruence irreducible polynomial.
下载PDF
Integral closure of a quartic extension
5
作者 TAN ShengLi XIE DaJun 《Science China Mathematics》 SCIE CSCD 2015年第3期553-564,共12页
Let R be a Noetherian unique factorization domain such that 2 and 3 are units,and let A=R[α]be a quartic extension over R by adding a rootαof an irreducible quartic polynomial p(z)=z4+az2+bz+c over R.We will compute... Let R be a Noetherian unique factorization domain such that 2 and 3 are units,and let A=R[α]be a quartic extension over R by adding a rootαof an irreducible quartic polynomial p(z)=z4+az2+bz+c over R.We will compute explicitly the integral closure of A in its fraction field,which is based on a proper factorization of the coefficients and the algebraic invariants of p(z).In fact,we get the factorization by resolving the singularities of a plane curve defined by z4+a(x)z2+b(x)z+c(x)=0.The integral closure is expressed as a syzygy module and the syzygy equations are given explicitly.We compute also the ramifications of the integral closure over R. 展开更多
关键词 algebraic invariants quartic extension integral closure DISCRIMINANT SYZYGY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部