The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, wher...The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, where A is a closed operator on Banach space X. The case that the problem is ill-posed is treated, and two subspaces Y(A, k) and H(A, ω) are introduced. Y(A, k) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v( t, x) such that ess sup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞. H(A, ω) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v(t,x)such that ess sup{e^-ωl|d/(dt)〈v(t,x),x^*)|:t≥0,x^*∈X^*,‖x^*‖≤1}〈+∞. The following conclusions are proved that Y(A, k) and H(A, ω) are Banach spaces, and both are continuously embedded in X; the restriction operator A | Y(A,k) generates a once-integrated cosine operator family { C(t) }t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,arbitary t≥0; the restriction operator A |H(A,ω) generates a once- integrated cosine operator family {C(t)}t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,arbitary t≥0.展开更多
The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutio...The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutionsof the Z-K equation are obtained.The methods used to solve the Z-K equation can be employed in further work toestablish new solutions for other nonlinear partial differential equations.展开更多
Abstract: At first one of g-inverses of A (×) In+Im(×) BT is given out, then the explicit solution to matrix equation AX + XB = C is gained by using the method of matrix decomposition, finally, a nume...Abstract: At first one of g-inverses of A (×) In+Im(×) BT is given out, then the explicit solution to matrix equation AX + XB = C is gained by using the method of matrix decomposition, finally, a numerical example is obtained.展开更多
Using the technique of integration within an ordered product (IWOP) of operators we construct intermediate coordinate-momentum representation, with which we build a type of operator Fredholm integration equation tha...Using the technique of integration within an ordered product (IWOP) of operators we construct intermediate coordinate-momentum representation, with which we build a type of operator Fredholm integration equation that is an operator generalization of the solution of thermo conduction equation. Then we seach for the solution of operator Fredholm integration equations, which provides us with a new approach for deriving some operator identities.展开更多
In this paper, we directly extend the applications of the Adomian decomposition method to investigate the complex KdV equation. By choosing different forms of wave functions as the initial values, three new types of r...In this paper, we directly extend the applications of the Adomian decomposition method to investigate the complex KdV equation. By choosing different forms of wave functions as the initial values, three new types of realistic numerical solutions: numerical positon, negaton solution, and particularly the numerical analytical complexiton solution are obtained, which can rapidly converge to the exact ones obtained by Lou et al. Numerical simulation figures are used to illustrate the efficiency and accuracy of the proposed method.展开更多
In this paper, using the generalized (G1/G)-expansion method and the auxiliary differential equation method, we discuss the (2+1)-dimensional canonical generalized KP (CGKP), KdV, and (2+1)-dimensional Burge...In this paper, using the generalized (G1/G)-expansion method and the auxiliary differential equation method, we discuss the (2+1)-dimensional canonical generalized KP (CGKP), KdV, and (2+1)-dimensional Burgers equations with variable coetticients. Many exact solutions of the equations are obtained in terms of elliptic functions, hyperbolic functions, trigonometric functions, and rational functions.展开更多
The aim of this paper is to obtain numerical solutions of the one-dimensional,two-dimensional and coupled Burgers' equations through the generalized differential quadrature method(GDQM).The polynomial-based differ...The aim of this paper is to obtain numerical solutions of the one-dimensional,two-dimensional and coupled Burgers' equations through the generalized differential quadrature method(GDQM).The polynomial-based differential quadrature(PDQ) method is employed and the obtained system of ordinary differential equations is solved via the total variation diminishing Runge-Kutta(TVD-RK) method.The numerical solutions are satisfactorily coincident with the exact solutions.The method can compete against the methods applied in the literature.展开更多
By the Backlund transformation method, an important (2+1)-dimensional nonlinear barotropie and quasigeostrophic potential vorticity (BQGPV) equation is investigated. Some simple special Backlund transformation th...By the Backlund transformation method, an important (2+1)-dimensional nonlinear barotropie and quasigeostrophic potential vorticity (BQGPV) equation is investigated. Some simple special Backlund transformation theorems are proposed and used to get explicit solutions of the BQGPV equation. Furthermore, all solutions of a second order linear ordinary differential equation including an arbitrary function can be used to construct explicit solutions of the (2+1)-dimensional BQGPV equation. Some figures are also given out to describe these solutions.展开更多
This study deal with seven points finite difference method to find the approximation solutions in the area of mean square calculus solutions for linear random parabolic partial differential equations. Several numerica...This study deal with seven points finite difference method to find the approximation solutions in the area of mean square calculus solutions for linear random parabolic partial differential equations. Several numerical examples are presented to show the ability and efficiency of this method.展开更多
In this study,by means of homotopy perturbation method(HPM) an approximate solution of the magnetohydrodynamic(MHD) boundary layer flow is obtained.The main feature of the HPM is that it deforms a difficult problem in...In this study,by means of homotopy perturbation method(HPM) an approximate solution of the magnetohydrodynamic(MHD) boundary layer flow is obtained.The main feature of the HPM is that it deforms a difficult problem into a set of problems which are easier to solve.HPM produces analytical expressions for the solution to nonlinear differential equations.The obtained analytic solution is in the form of an infinite power series.In this work,the analytical solution obtained by using only two terms from HPM solution.Comparisons with the exact solution and the solution obtained by the Pade approximants and shooting method show the high accuracy,simplicity and efficiency of this method.展开更多
The author investigates the hyper order of solutions of the higher order linear equation, andimproves the results of M. Ozawa[15], G. Gundersen[6] and J. K. Langley[12].
The char-set method of polynomial equations-solving is naturally extended to the differential case which gives rise to an algorithmic method of solving arbitrary systems of algebrico-differential equations.As an illus...The char-set method of polynomial equations-solving is naturally extended to the differential case which gives rise to an algorithmic method of solving arbitrary systems of algebrico-differential equations.As an illustration of the method,the Devil's Problem of Pommaret is solved in details.展开更多
Ideal class groups H(K) of algebraic quadratic function fields K are studied. Necessaryand sufficient condition is given for the class group H(K) to contain a cyclic subgroup of anyorder n, which holds true for both r...Ideal class groups H(K) of algebraic quadratic function fields K are studied. Necessaryand sufficient condition is given for the class group H(K) to contain a cyclic subgroup of anyorder n, which holds true for both real and imaginary fields K. Then several series of functionfields K, including real, inertia imaginary, and ramified imaginary quadratic function fields, aregiven, for which the class groups H(K) are proved to contain cyclic subgroups of order n.展开更多
Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial d...Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.展开更多
基金The Natural Science Foundation of Department ofEducation of Jiangsu Province (No06KJD110087)
文摘The topic on the subspaces for the polynomially or exponentially bounded weak mild solutions of the following abstract Cauchy problem d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X is studied, where A is a closed operator on Banach space X. The case that the problem is ill-posed is treated, and two subspaces Y(A, k) and H(A, ω) are introduced. Y(A, k) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v( t, x) such that ess sup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞. H(A, ω) is the set of all x in X for which the second order abstract differential equation has a weak mild solution v(t,x)such that ess sup{e^-ωl|d/(dt)〈v(t,x),x^*)|:t≥0,x^*∈X^*,‖x^*‖≤1}〈+∞. The following conclusions are proved that Y(A, k) and H(A, ω) are Banach spaces, and both are continuously embedded in X; the restriction operator A | Y(A,k) generates a once-integrated cosine operator family { C(t) }t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,arbitary t≥0; the restriction operator A |H(A,ω) generates a once- integrated cosine operator family {C(t)}t≥0 such that limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,arbitary t≥0.
基金Supported by the National Natural Science Foundation of China under Grant No.10974160
文摘The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutionsof the Z-K equation are obtained.The methods used to solve the Z-K equation can be employed in further work toestablish new solutions for other nonlinear partial differential equations.
文摘Abstract: At first one of g-inverses of A (×) In+Im(×) BT is given out, then the explicit solution to matrix equation AX + XB = C is gained by using the method of matrix decomposition, finally, a numerical example is obtained.
基金The project supported by the President Foundation of the Chinese Academy of Sciences
文摘Using the technique of integration within an ordered product (IWOP) of operators we construct intermediate coordinate-momentum representation, with which we build a type of operator Fredholm integration equation that is an operator generalization of the solution of thermo conduction equation. Then we seach for the solution of operator Fredholm integration equations, which provides us with a new approach for deriving some operator identities.
基金National Natural Science Foundation of China under Grant No.10735030Shanghai Leading Academic Discipline Project under Grant No.B412+2 种基金Natural Science Foundations of Zhejiang Province of China under Grant No.Y604056the Doctoral Foundation of Ningbo City under Grant No.2005A61030K.C.Wong Magna Fund in Ningbo University
文摘In this paper, we directly extend the applications of the Adomian decomposition method to investigate the complex KdV equation. By choosing different forms of wave functions as the initial values, three new types of realistic numerical solutions: numerical positon, negaton solution, and particularly the numerical analytical complexiton solution are obtained, which can rapidly converge to the exact ones obtained by Lou et al. Numerical simulation figures are used to illustrate the efficiency and accuracy of the proposed method.
基金Supported by the Natural Science Foundation of Shandong Province under Grant Nos.Q2005A01 and Y2007G64
文摘In this paper, using the generalized (G1/G)-expansion method and the auxiliary differential equation method, we discuss the (2+1)-dimensional canonical generalized KP (CGKP), KdV, and (2+1)-dimensional Burgers equations with variable coetticients. Many exact solutions of the equations are obtained in terms of elliptic functions, hyperbolic functions, trigonometric functions, and rational functions.
文摘The aim of this paper is to obtain numerical solutions of the one-dimensional,two-dimensional and coupled Burgers' equations through the generalized differential quadrature method(GDQM).The polynomial-based differential quadrature(PDQ) method is employed and the obtained system of ordinary differential equations is solved via the total variation diminishing Runge-Kutta(TVD-RK) method.The numerical solutions are satisfactorily coincident with the exact solutions.The method can compete against the methods applied in the literature.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10735030, 90718041, and 40975038Shanghai Leading Academic Discipline Project under Grant No. B412Program for Changjiang Scholars and Innovative Research Team in University (IRT0734)
文摘By the Backlund transformation method, an important (2+1)-dimensional nonlinear barotropie and quasigeostrophic potential vorticity (BQGPV) equation is investigated. Some simple special Backlund transformation theorems are proposed and used to get explicit solutions of the BQGPV equation. Furthermore, all solutions of a second order linear ordinary differential equation including an arbitrary function can be used to construct explicit solutions of the (2+1)-dimensional BQGPV equation. Some figures are also given out to describe these solutions.
文摘This study deal with seven points finite difference method to find the approximation solutions in the area of mean square calculus solutions for linear random parabolic partial differential equations. Several numerical examples are presented to show the ability and efficiency of this method.
文摘In this study,by means of homotopy perturbation method(HPM) an approximate solution of the magnetohydrodynamic(MHD) boundary layer flow is obtained.The main feature of the HPM is that it deforms a difficult problem into a set of problems which are easier to solve.HPM produces analytical expressions for the solution to nonlinear differential equations.The obtained analytic solution is in the form of an infinite power series.In this work,the analytical solution obtained by using only two terms from HPM solution.Comparisons with the exact solution and the solution obtained by the Pade approximants and shooting method show the high accuracy,simplicity and efficiency of this method.
基金the National Natural Science Foundation of China(No.10161006)the Jiangxi Provincial Natural Science Foundation of China(No.001109).
文摘The author investigates the hyper order of solutions of the higher order linear equation, andimproves the results of M. Ozawa[15], G. Gundersen[6] and J. K. Langley[12].
基金The present paper is in honor of late Professor R.Thom as a great mathematician, a great scientist,also a great thinker of modern times.
文摘The char-set method of polynomial equations-solving is naturally extended to the differential case which gives rise to an algorithmic method of solving arbitrary systems of algebrico-differential equations.As an illustration of the method,the Devil's Problem of Pommaret is solved in details.
文摘Ideal class groups H(K) of algebraic quadratic function fields K are studied. Necessaryand sufficient condition is given for the class group H(K) to contain a cyclic subgroup of anyorder n, which holds true for both real and imaginary fields K. Then several series of functionfields K, including real, inertia imaginary, and ramified imaginary quadratic function fields, aregiven, for which the class groups H(K) are proved to contain cyclic subgroups of order n.
基金Supported by the National Natural Science Foundation of China under Grant No.11171312
文摘Utilizing the Wronskian technique, a combined Wronskian condition is established for a (3+1)-dimensional generalized KP equation. The generating functions for matrix entries satisfy a linear system of new partial differential equations. Moreover, as applications, examples of Wronskian determinant solutions, including N-soliton solutions, periodic solutions and rational solutions, are computed.