In this paper, we investigate not only the acceleration problem of the q-Bernstein polynomials Bn(f, q; x) to B∞ (f, q; x) but also the convergence of their iterated Boolean sum. Using the methods of exact estima...In this paper, we investigate not only the acceleration problem of the q-Bernstein polynomials Bn(f, q; x) to B∞ (f, q; x) but also the convergence of their iterated Boolean sum. Using the methods of exact estimate and theories of modulus of smoothness, we get the respective estimates of the convergence rate, which suggest that q-Bernstein polynomials have the similar answer with the classical Bernstein polynomials to these two problems.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
When solving a mathematical problem, we sometimes encounter a situation where we can not reach a correct answer in spite of acquiring knowledge and formula necessary for the solution. The reason can be attributed to t...When solving a mathematical problem, we sometimes encounter a situation where we can not reach a correct answer in spite of acquiring knowledge and formula necessary for the solution. The reason can be attributed to the lack in metacognitive abilities. Metacognitive abilities consist of comparing the difficulty of problem with own ability, proper plan of solution process, and conscious monitoring and control of solution process. The role and importance of metacognitive ability in mathematical problem solving of permutations and combinations was explored. Participants were required to solve five practical problems related to permutations and combinations. For each problem, the solution process was divided into: (1) understanding (recognition) of mathematical problem; (2) plan of solution; (3) execution of solution. Participants were also required to rate the anticipation whether they could solve it or not, and to rate the confidence of their own answer. According to the total score of five problems, the participants were categorized into the group of the high test score and the group of the low test score. As a result, at the plan and the execution processes, statistically significant differences were detected between the high and the low score groups. As for the rating on the anticipation of result and the confidence of own answer, no significant differences were found between both groups. Moreover, the relationship between the score of plan process and the score of execution process was statistically correlated. In other words, the more proper the plan process was conducted, the more proper solution the participants reached. In such a way, the importance of metacognitive ability in the solving process, especially the plan ability, was suggested.展开更多
The hardness of tensor decomposition problem has many achievements, but limited applications in cryptography, and the tensor decomposition problem has been considered to have the potential to resist quantum computing....The hardness of tensor decomposition problem has many achievements, but limited applications in cryptography, and the tensor decomposition problem has been considered to have the potential to resist quantum computing. In this paper, we firstly proposed a new variant of tensor decomposition problem, then two one-way functions are proposed based on the hard problem. Secondly we propose a key exchange protocol based on the one-way functions, then the security analysis, efficiency, recommended parameters and etc. are also given. The analyses show that our scheme has the following characteristics: easy to implement in software and hardware, security can be reduced to hard problems, and it has the potential to resist quantum computing.Besides the new key exchange can be as an alternative comparing with other classical key protocols.展开更多
This research tends to make the experimental study on the mathematics teaching model of“situated creation and problem-based instruction”(SCPBI),namely,the teaching process of“creating situations—posing problems—s...This research tends to make the experimental study on the mathematics teaching model of“situated creation and problem-based instruction”(SCPBI),namely,the teaching process of“creating situations—posing problems—solving problems—applying mathematics”.It is aimed at changing the situation where students generally lack problem-based learning experience and problem awareness.Result shows that this teaching model plays a vital role in arousing students’interest in mathematics,improving their ability to pose problems and upgrading their mathematics learning ability as well.展开更多
文摘In this paper, we investigate not only the acceleration problem of the q-Bernstein polynomials Bn(f, q; x) to B∞ (f, q; x) but also the convergence of their iterated Boolean sum. Using the methods of exact estimate and theories of modulus of smoothness, we get the respective estimates of the convergence rate, which suggest that q-Bernstein polynomials have the similar answer with the classical Bernstein polynomials to these two problems.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
文摘When solving a mathematical problem, we sometimes encounter a situation where we can not reach a correct answer in spite of acquiring knowledge and formula necessary for the solution. The reason can be attributed to the lack in metacognitive abilities. Metacognitive abilities consist of comparing the difficulty of problem with own ability, proper plan of solution process, and conscious monitoring and control of solution process. The role and importance of metacognitive ability in mathematical problem solving of permutations and combinations was explored. Participants were required to solve five practical problems related to permutations and combinations. For each problem, the solution process was divided into: (1) understanding (recognition) of mathematical problem; (2) plan of solution; (3) execution of solution. Participants were also required to rate the anticipation whether they could solve it or not, and to rate the confidence of their own answer. According to the total score of five problems, the participants were categorized into the group of the high test score and the group of the low test score. As a result, at the plan and the execution processes, statistically significant differences were detected between the high and the low score groups. As for the rating on the anticipation of result and the confidence of own answer, no significant differences were found between both groups. Moreover, the relationship between the score of plan process and the score of execution process was statistically correlated. In other words, the more proper the plan process was conducted, the more proper solution the participants reached. In such a way, the importance of metacognitive ability in the solving process, especially the plan ability, was suggested.
基金supported by the National Natural Science Foundation of China(Grant Nos.61303212,61170080,61202386)the State Key Program of National Natural Science of China(Grant Nos.61332019,U1135004)+2 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91018008)Major State Basic Research Development Program of China(973 Program)(No.2014CB340600)the Hubei Natural Science Foundation of China(Grant No.2011CDB453,2014CFB440)
文摘The hardness of tensor decomposition problem has many achievements, but limited applications in cryptography, and the tensor decomposition problem has been considered to have the potential to resist quantum computing. In this paper, we firstly proposed a new variant of tensor decomposition problem, then two one-way functions are proposed based on the hard problem. Secondly we propose a key exchange protocol based on the one-way functions, then the security analysis, efficiency, recommended parameters and etc. are also given. The analyses show that our scheme has the following characteristics: easy to implement in software and hardware, security can be reduced to hard problems, and it has the potential to resist quantum computing.Besides the new key exchange can be as an alternative comparing with other classical key protocols.
文摘This research tends to make the experimental study on the mathematics teaching model of“situated creation and problem-based instruction”(SCPBI),namely,the teaching process of“creating situations—posing problems—solving problems—applying mathematics”.It is aimed at changing the situation where students generally lack problem-based learning experience and problem awareness.Result shows that this teaching model plays a vital role in arousing students’interest in mathematics,improving their ability to pose problems and upgrading their mathematics learning ability as well.