Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ...Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.展开更多
Aim To construct an analytic solution for the asymptotic field near a tensile cracktip of power-law hardening material under Plane stress condition. Methods Constructing funtion method was used. Results The exact as...Aim To construct an analytic solution for the asymptotic field near a tensile cracktip of power-law hardening material under Plane stress condition. Methods Constructing funtion method was used. Results The exact asymptotic field was found. Conclusion The exact analytic solution for the problem is available.展开更多
With the help of an objective reduction approach (ORA), abundant exact solutions of (2+1)-dimensional higher-order Boussinesq system (including some hyperboloid function solutions, trigonometric function solutio...With the help of an objective reduction approach (ORA), abundant exact solutions of (2+1)-dimensional higher-order Boussinesq system (including some hyperboloid function solutions, trigonometric function solutions, and a rational function solution) are obtained. It is shown that some novel soliton structures, like single linearity soliton structure, breath soliton structure, single linearity y-periodic solitary wave structure, libration dromion structure, and kink-like multisoliton structure with actual physical meaning exist in the (2+1)-dimensional higher-order Boussinesq system.展开更多
Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decom...Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized estimating equations for the mean and correlation parameter. Kernel estimators are developed for the estimation of the nonparametric variation function. Asymptotic normality of the the resulting estimators is established. Finally, the simulation study and the real data analysis are used to illustrate the proposed approach.展开更多
文摘Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.
文摘Aim To construct an analytic solution for the asymptotic field near a tensile cracktip of power-law hardening material under Plane stress condition. Methods Constructing funtion method was used. Results The exact asymptotic field was found. Conclusion The exact analytic solution for the problem is available.
基金the Natural Science Foundation of Zhejiang Province under Grant Nos. Y604106 and Y606181the Foundation of New Century "151 Talent Engineering" of Zhejiang Province+1 种基金the Scientific Research Foundation of Key Discipline of Zhejiang Provincethe Natural Science Foundation of Zhejiang Lishui University under Grant No. KZ06002
文摘With the help of an objective reduction approach (ORA), abundant exact solutions of (2+1)-dimensional higher-order Boussinesq system (including some hyperboloid function solutions, trigonometric function solutions, and a rational function solution) are obtained. It is shown that some novel soliton structures, like single linearity soliton structure, breath soliton structure, single linearity y-periodic solitary wave structure, libration dromion structure, and kink-like multisoliton structure with actual physical meaning exist in the (2+1)-dimensional higher-order Boussinesq system.
基金supported by National Natural Science Foundation of China (GrantNos.10931002,10911120386)
文摘Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized estimating equations for the mean and correlation parameter. Kernel estimators are developed for the estimation of the nonparametric variation function. Asymptotic normality of the the resulting estimators is established. Finally, the simulation study and the real data analysis are used to illustrate the proposed approach.