We develop a 3D bounded slice-surface grid (3D-BSSG) structure for representation and introduce the solution space smoothing technique to search for the optimal solution. Experiment results demonstrate that a 3D-BSS...We develop a 3D bounded slice-surface grid (3D-BSSG) structure for representation and introduce the solution space smoothing technique to search for the optimal solution. Experiment results demonstrate that a 3D-BSSG structure based algorithm is very effective and efficient.展开更多
The degradation process of organosol coated tinplate in beverage was investigated by electrochemical noise (EN) technique combined with morphology characterization.EN data were analyzed using phase space reconstructio...The degradation process of organosol coated tinplate in beverage was investigated by electrochemical noise (EN) technique combined with morphology characterization.EN data were analyzed using phase space reconstruction theory.With the correlation dimensions obtained from the phase space reconstruction,the chaotic behavior of EN was quantitatively evaluated.The results show that both electrochemical potential noise (EPN) and electrochemical current noise (ECN) have chaotic properties.The correlation dimensions of EPN increase with corrosion extent,while those of ECN seem nearly unchanged.The increased correlation dimensions of EPN during the degradation process are associated with the increased susceptibility to local corrosion.展开更多
To improve the prediction accuracy of micro-electromechanical systems(MEMS)gyroscope random drift series,a multi-scale prediction model based on empirical mode decomposition(EMD)and support vector regression(SVR)is pr...To improve the prediction accuracy of micro-electromechanical systems(MEMS)gyroscope random drift series,a multi-scale prediction model based on empirical mode decomposition(EMD)and support vector regression(SVR)is proposed.Firstly,EMD is employed to decompose the raw drift series into a finite number of intrinsic mode functions(IMFs)with the frequency descending successively.Secondly,according to the time-frequency characteristic of each IMF,the corresponding SVR prediction model is established based on phase space reconstruction.Finally,the prediction results are obtained by adding up the prediction results of all IMFs with equal weight.The experimental results demonstrate the validity of the proposed model in random drift prediction of MEMS gyroscope.Compared with a single SVR model,the proposed model has higher prediction precision,which can provide the basis for drift error compensation of MEMS gyroscope.展开更多
文摘We develop a 3D bounded slice-surface grid (3D-BSSG) structure for representation and introduce the solution space smoothing technique to search for the optimal solution. Experiment results demonstrate that a 3D-BSSG structure based algorithm is very effective and efficient.
基金Supported by Major State Basic Research Program of China ("973" Program,No. 2011CB610505)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120032110029)
文摘The degradation process of organosol coated tinplate in beverage was investigated by electrochemical noise (EN) technique combined with morphology characterization.EN data were analyzed using phase space reconstruction theory.With the correlation dimensions obtained from the phase space reconstruction,the chaotic behavior of EN was quantitatively evaluated.The results show that both electrochemical potential noise (EPN) and electrochemical current noise (ECN) have chaotic properties.The correlation dimensions of EPN increase with corrosion extent,while those of ECN seem nearly unchanged.The increased correlation dimensions of EPN during the degradation process are associated with the increased susceptibility to local corrosion.
基金National Natural Science Foundation of China(No.61427810)。
文摘To improve the prediction accuracy of micro-electromechanical systems(MEMS)gyroscope random drift series,a multi-scale prediction model based on empirical mode decomposition(EMD)and support vector regression(SVR)is proposed.Firstly,EMD is employed to decompose the raw drift series into a finite number of intrinsic mode functions(IMFs)with the frequency descending successively.Secondly,according to the time-frequency characteristic of each IMF,the corresponding SVR prediction model is established based on phase space reconstruction.Finally,the prediction results are obtained by adding up the prediction results of all IMFs with equal weight.The experimental results demonstrate the validity of the proposed model in random drift prediction of MEMS gyroscope.Compared with a single SVR model,the proposed model has higher prediction precision,which can provide the basis for drift error compensation of MEMS gyroscope.