Translation studies has undergone three different periods: the traditional philological period, the modem linguistic period and the contemporary cultural period. Ever since the cultural turn, especially after the int...Translation studies has undergone three different periods: the traditional philological period, the modem linguistic period and the contemporary cultural period. Ever since the cultural turn, especially after the introduction of deconstruction into translation, traditional translation theories have been greatly affected. The traditional principle like faithfulness to the source text and the writer has been attacked and the translator's subjectivity and creativity have been greatly advocated. Under such circumstances, this paper, however, holds that translation studies should turn to ethics for the messy situation, and translators should be able to identify norms of honor and shame in translation practice.展开更多
The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/M...The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/MS). PGC was applied to study the F t curve of the multiblock copolymer and PGC/MS was used to separate and identify the pyrolyzates. DTA experiment was used to study the decomposition temperature. The results show that the beginning point of elastomer’s decomposition was about 300?℃ and the decomposition temperature of most of the sample was 550?℃. Many pyrolyzates were produced because of the breaking of weak bonds in the sample. The possible microstructure was verified and the pyrolysis pathway of the copolymer was investigated.展开更多
Microstructure and phase transformation of disodium guanosine 5′-monophosphate(5′-GMPNa_2) are extremely important for controlling the process and understanding the mechanism of crystallization. In this work, the th...Microstructure and phase transformation of disodium guanosine 5′-monophosphate(5′-GMPNa_2) are extremely important for controlling the process and understanding the mechanism of crystallization. In this work, the thermodynamic properties of polymorphous 5′-GMPNa_2 especially the solubility were studied, the solubility results show that 5′-GMPNa_2 is more soluble in ethanol–water(E–W) than in isopropanol–water(I–W). The amorphous form of 5′-GMPNa_2 is more soluble than the crystalline form at the same mole fraction and temperature. Meanwhile, the crystalline forms and morphologies of the residual solids were characterized by PXRD and SEM. The results indicate that solid forms of 5′-GMPNa_2 transformed spontaneously from amorphous to crystalline when the ethanol proportion is ≥20%. In addition, increasing the pH facilitates the dissolution of 5′-GMPNa_2 and helps to maintain the crystalline form. The associated Gibbs free energy values were calculated to verify the trend of transformation from amorphous to crystalline 5′-GMPNa_2. These results should help to guide the industrial crystallization process and to obtain the crystalline form of 5′-GMPNa_2.展开更多
The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbo...The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbon in the stone coal burned and produced CO_(2) in sufficient oxygen during roasting.The mass loss of stone coal mainly occurred within the temperature range from 600 to 840℃,and the thermal decomposition reaction rate increased to the peak at approximately 700℃.Verified by the Flynn−Wall−Ozawa(FWO)and Kissinger−Akahira−Sunose(KAS)methods,the thermal decomposition reaction of stone coal was described by the Ginstling−Brounshtein equation.The apparent activation energy and pre-exponential factors were 136.09 kJ/mol and 12.40 s^(−1),respectively.The illite in stone coal lost hydroxyl groups and produced dehydrated illite at 650℃,and the structure of sericite was gradually destroyed.The surface of stone coal became rough and irregular as the temperature increased.Severe sintering occurred at the roasting temperature of 850℃.展开更多
文摘Translation studies has undergone three different periods: the traditional philological period, the modem linguistic period and the contemporary cultural period. Ever since the cultural turn, especially after the introduction of deconstruction into translation, traditional translation theories have been greatly affected. The traditional principle like faithfulness to the source text and the writer has been attacked and the translator's subjectivity and creativity have been greatly advocated. Under such circumstances, this paper, however, holds that translation studies should turn to ethics for the messy situation, and translators should be able to identify norms of honor and shame in translation practice.
文摘The composition and sequence distribution of monomeric units in polyester polyether multiblock copolymer were studied by pyrolysis? gas chromatography (PGC) and pyrolysis gas chromatography/mass spectrometry (PGC/MS). PGC was applied to study the F t curve of the multiblock copolymer and PGC/MS was used to separate and identify the pyrolyzates. DTA experiment was used to study the decomposition temperature. The results show that the beginning point of elastomer’s decomposition was about 300?℃ and the decomposition temperature of most of the sample was 550?℃. Many pyrolyzates were produced because of the breaking of weak bonds in the sample. The possible microstructure was verified and the pyrolysis pathway of the copolymer was investigated.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University(IRT_14R28)the National Basic Research Program of China(2013CB733602)+4 种基金the Major Research Plan of the National Natural Science Foundation of China(21390204)the National Natural Science Foundation of China(21636003,21506090)Open Fund by Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals(JSBGFC14005)Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Microstructure and phase transformation of disodium guanosine 5′-monophosphate(5′-GMPNa_2) are extremely important for controlling the process and understanding the mechanism of crystallization. In this work, the thermodynamic properties of polymorphous 5′-GMPNa_2 especially the solubility were studied, the solubility results show that 5′-GMPNa_2 is more soluble in ethanol–water(E–W) than in isopropanol–water(I–W). The amorphous form of 5′-GMPNa_2 is more soluble than the crystalline form at the same mole fraction and temperature. Meanwhile, the crystalline forms and morphologies of the residual solids were characterized by PXRD and SEM. The results indicate that solid forms of 5′-GMPNa_2 transformed spontaneously from amorphous to crystalline when the ethanol proportion is ≥20%. In addition, increasing the pH facilitates the dissolution of 5′-GMPNa_2 and helps to maintain the crystalline form. The associated Gibbs free energy values were calculated to verify the trend of transformation from amorphous to crystalline 5′-GMPNa_2. These results should help to guide the industrial crystallization process and to obtain the crystalline form of 5′-GMPNa_2.
基金the Fundamental Research Funds for the Central Universities of China(No.N2101023).
文摘The thermodynamics,kinetics,phase transformation,and microstructure evolution of vanadium-bearing stone coal during suspension roasting were systematically investigated.Thermodynamic calculations showed that the carbon in the stone coal burned and produced CO_(2) in sufficient oxygen during roasting.The mass loss of stone coal mainly occurred within the temperature range from 600 to 840℃,and the thermal decomposition reaction rate increased to the peak at approximately 700℃.Verified by the Flynn−Wall−Ozawa(FWO)and Kissinger−Akahira−Sunose(KAS)methods,the thermal decomposition reaction of stone coal was described by the Ginstling−Brounshtein equation.The apparent activation energy and pre-exponential factors were 136.09 kJ/mol and 12.40 s^(−1),respectively.The illite in stone coal lost hydroxyl groups and produced dehydrated illite at 650℃,and the structure of sericite was gradually destroyed.The surface of stone coal became rough and irregular as the temperature increased.Severe sintering occurred at the roasting temperature of 850℃.