The Korteweg-de Vries equation with a forcing term is established by recent studies as a simple mathematicalmodel of describing the physics of a shallow layer of fluid subject to external forcing.In the present paper,...The Korteweg-de Vries equation with a forcing term is established by recent studies as a simple mathematicalmodel of describing the physics of a shallow layer of fluid subject to external forcing.In the present paper,we study theanalytic solutions to the KdV equation with forcing term by using Hirota's direct method.Several exact solutions aregiven as examples,from which one can see that the same type soliton solutions can be excited by different forced term.展开更多
We present analytical method to calculate single particle matrix elements used in atomic and nuclear physics. We show seven different formulas of matrix elements of the operator f(r)d_r^m where f(r) = r~μ, r~μjJ(qr)...We present analytical method to calculate single particle matrix elements used in atomic and nuclear physics. We show seven different formulas of matrix elements of the operator f(r)d_r^m where f(r) = r~μ, r~μjJ(qr), V(r)corresponding to the Gaussian and the Yukawa potentials used in nuclear shell models and nuclear structure. In addition,we take into account a general integral formula of the matrix element 〈 n′ l′|f(r) d_r^(m) |n l〉 that covers all seven matrix elements obtained analytically.展开更多
基金Supported by the GUCAS President Grant,the National Natural Science Foundation of China under Grant No.10701076
文摘The Korteweg-de Vries equation with a forcing term is established by recent studies as a simple mathematicalmodel of describing the physics of a shallow layer of fluid subject to external forcing.In the present paper,we study theanalytic solutions to the KdV equation with forcing term by using Hirota's direct method.Several exact solutions aregiven as examples,from which one can see that the same type soliton solutions can be excited by different forced term.
文摘We present analytical method to calculate single particle matrix elements used in atomic and nuclear physics. We show seven different formulas of matrix elements of the operator f(r)d_r^m where f(r) = r~μ, r~μjJ(qr), V(r)corresponding to the Gaussian and the Yukawa potentials used in nuclear shell models and nuclear structure. In addition,we take into account a general integral formula of the matrix element 〈 n′ l′|f(r) d_r^(m) |n l〉 that covers all seven matrix elements obtained analytically.