分析RFID(Radio Frequency Identification)编码解析网络特点,总结FID编码解析服务器软件在设计时需要面对的挑战。通过选用ACE(Adaptive Communication Environment)网络编程技术,使用Reactor框架作为网络模块的核心,Dispatch模式进行...分析RFID(Radio Frequency Identification)编码解析网络特点,总结FID编码解析服务器软件在设计时需要面对的挑战。通过选用ACE(Adaptive Communication Environment)网络编程技术,使用Reactor框架作为网络模块的核心,Dispatch模式进行基于角色的业务分发,实现了一种高速的RFID编码解析服务器软件。展开更多
针对短时间主动热激励作用下煤岩介质表征差异不明显,不易快速、准确识别煤岩界面的难题,提出一种基于改进金字塔场景解析网络(pyramid scene parsing network,简称PSPnet)模型-MobileNetV2的煤岩界面快速精准识别方法。通过搭建煤岩主...针对短时间主动热激励作用下煤岩介质表征差异不明显,不易快速、准确识别煤岩界面的难题,提出一种基于改进金字塔场景解析网络(pyramid scene parsing network,简称PSPnet)模型-MobileNetV2的煤岩界面快速精准识别方法。通过搭建煤岩主动红外试验平台,采集并获取短时主动热激励作用下的煤岩界面红外热图像,构建了煤岩红外图像数据集;对传统PSPnet模型进行改进,采用轻量级网络模型MobileNetV2作为主干网络提取特征,大幅降低了网络模型所占内存和训练时间,同时将注意力机制模块(convolutional block attention module,简称CBAM)与金字塔场景解析(pyramid scene parsing,简称PSP)模块的上采样特征层和PSPnet网络模型的浅层特征层进行融合,有效提升模型对特征的细化能力。试验结果表明:基于改进的PSPnet-MobileNetV2网络模型所占内存仅为9.12 MB,较原始PSPnet模型减少了94.88%;煤和岩的交并比为96.52%和96.87%,分别提升了8.29%和7.7%;像素准确度分别为97.25%和99.15%,较原始网络模型分别提升了7.32%和1.64%;测试时间降低了53.70%。该方法为煤岩界面的快速和预先精准识别提供了一种有效技术手段。展开更多
文摘分析RFID(Radio Frequency Identification)编码解析网络特点,总结FID编码解析服务器软件在设计时需要面对的挑战。通过选用ACE(Adaptive Communication Environment)网络编程技术,使用Reactor框架作为网络模块的核心,Dispatch模式进行基于角色的业务分发,实现了一种高速的RFID编码解析服务器软件。
文摘针对短时间主动热激励作用下煤岩介质表征差异不明显,不易快速、准确识别煤岩界面的难题,提出一种基于改进金字塔场景解析网络(pyramid scene parsing network,简称PSPnet)模型-MobileNetV2的煤岩界面快速精准识别方法。通过搭建煤岩主动红外试验平台,采集并获取短时主动热激励作用下的煤岩界面红外热图像,构建了煤岩红外图像数据集;对传统PSPnet模型进行改进,采用轻量级网络模型MobileNetV2作为主干网络提取特征,大幅降低了网络模型所占内存和训练时间,同时将注意力机制模块(convolutional block attention module,简称CBAM)与金字塔场景解析(pyramid scene parsing,简称PSP)模块的上采样特征层和PSPnet网络模型的浅层特征层进行融合,有效提升模型对特征的细化能力。试验结果表明:基于改进的PSPnet-MobileNetV2网络模型所占内存仅为9.12 MB,较原始PSPnet模型减少了94.88%;煤和岩的交并比为96.52%和96.87%,分别提升了8.29%和7.7%;像素准确度分别为97.25%和99.15%,较原始网络模型分别提升了7.32%和1.64%;测试时间降低了53.70%。该方法为煤岩界面的快速和预先精准识别提供了一种有效技术手段。