对比减压和常压条件下提取的柴胡挥发油在成分、含量及药效方面的差异,考察挥发油的品质,优选提取方法。采用气相色谱-质谱联用(GC-MS)法分析柴胡挥发油成分及其相对含量,再采用气相色谱法建立挥发油中己醛、庚醛、正辛醛和反式-2,4-癸...对比减压和常压条件下提取的柴胡挥发油在成分、含量及药效方面的差异,考察挥发油的品质,优选提取方法。采用气相色谱-质谱联用(GC-MS)法分析柴胡挥发油成分及其相对含量,再采用气相色谱法建立挥发油中己醛、庚醛、正辛醛和反式-2,4-癸二烯醛的含量检测方法,测定不同压力下提取的柴胡挥发油有效成分含量,通过背部皮下注射酵母混悬液复制大鼠发热模型,将常压、减压提取的柴胡挥发油溶于1%吐温80后腹腔注射给药,测定大鼠不同时间点的体温变化情况,利用单因素方差分析(Single factor analysis of variance)进行组间比较。结果显示:减压提取与常压提取的挥发油成分和含量存在差异,己醛、庚醛、正辛醛和反式-2,4-癸二烯醛在减压提取方法中的提取率更高,同时该方法提取的挥发油对干酵母引起的发热药效更显著。由此可见,减压提取能有效减少热敏性成分被破坏,提高有效成分的提取效率,提取的柴胡挥发油具有更显著的药效,品质优于常压提取。展开更多
The analysis on the feedstock pyrolysis characteristic and the impacts of process parameters on pyrolysis outcomes can assist in the designing,operating and optimizing pyrolysis processes.This work aims to utilize bot...The analysis on the feedstock pyrolysis characteristic and the impacts of process parameters on pyrolysis outcomes can assist in the designing,operating and optimizing pyrolysis processes.This work aims to utilize both experimental and modelling approaches to perform the analysis on three biomass feedstocks—wood sawdust,bamboo shred and Jatropha Curcas seed cake residue,and to provide insights for the design and operation of pyrolysis processes.For the experimental part,the study investigated the effect of heating rate,final pyrolysis temperature and sample size on pyrolysis using common thermal analysis techniques.For the modelling part,a transient mathematical model that integrates the feedstock characteristic from the experimental study was used to simulate the pyrolysis progress of selected biomass feedstock particles for reactor scenarios.The model composes of several sub-models that describe pyrolysis kinetic and heat flow,particle heat transfer,particle shrinking and reactor operation.With better understanding of the effects of process conditions and feedstock characteristics on pyrolysis through both experimental and modelling studies,this work discusses on the considerations of and interrelation between feedstock size,pyrolysis energy usage,processing time and product quality for the design and operation of pyrolysis processes.展开更多
Boiling of water/triethyleneglycol(TEG)binary solution has a wide-ranging application in the gas processing engineering.Design,operation and optimization of the involved boilers require accurate prediction of boiling ...Boiling of water/triethyleneglycol(TEG)binary solution has a wide-ranging application in the gas processing engineering.Design,operation and optimization of the involved boilers require accurate prediction of boiling heat transfer coefficient between surface and solution.In this investigation,nucleate pool boiling heat transfer coefficient has been experimentally measured on a horizontal rod heater in water/TEG binary solutions in a wide range of concentrations and heat fluxes under ambient condition.The present experimental data are correlated using major existing correlations.In addition a correlation is presented for prediction of pool boiling heat transfer for the system in which the vapour pressure of one component is negligible.This model is based on the mass transfer rate equation for prediction of the concentration at the bubble vapor/liquid interface.Based on this prediction,the temperature of the interface and accordingly,the boiling heat transfer coefficient could be straightforwardly calculated from the known concentration at the interface.It is shown that this simple model has sufficient accuracy and is acceptable below the medium concentrations of TEG when the vapor equilibrium concentration of TEG is almost zero.The presented model excludes any tuning parameter and requires very few physical properties to apply.展开更多
In this experiment, lignite was refined and processed through binderless briquette preparation process from low-rank coal and became briquette. Then, lignite and its briquette were pyrolysed as materials to compare th...In this experiment, lignite was refined and processed through binderless briquette preparation process from low-rank coal and became briquette. Then, lignite and its briquette were pyrolysed as materials to compare the nature of their pyrolysis. In this study, the experiment was carried out through a lab tube furnace, at a heating rate of 10 ~C/min, and the gas was analyzed and compared, which was collected at different temperatures. The results show that: in the pyrolysis temperature of 550-850 ℃, the semi-coke yield of briquette is 2%-6% higher than lignite, the tar yield of briquette is 2%-3% higher than lignite and the gas yield of briquette is 4%-9% less than lignite. The time required for complete release of the briquette is about 20 min less than lignite. The components in the pyrolysis gas of lignite and its briquette are the same, and their variation with the pyrolysis temperature is similar.展开更多
Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are ...Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of hightemperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature(up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas(LPG) and naphtha are used as a feedstock. The detailed data are obtained on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases(LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantially higher than in current technology.展开更多
The elevated supersaturation of total dissolved gas (TDG) downstream of a high-dam spill has deleterious effects on fish in a large range. A one-dimensional (l-D) longitudinal model is optimal for the prediction o...The elevated supersaturation of total dissolved gas (TDG) downstream of a high-dam spill has deleterious effects on fish in a large range. A one-dimensional (l-D) longitudinal model is optimal for the prediction of supersaturated TDG dissipation over a long distance. The key issue of the model is to determine the dissipation coefficient accurately. In agreement with field observations and experiment data, dimensional analysis and regression were performed to propose a formula for estimating the dissipation coefficient of supersaturated TDG in various rivers and reservoirs, and it involves the effects of the turbulence intensity, the hydro-pressure and the solid-liquid interface. The friction velocity, water depth, hydraulic radius and Froude number are independent variables in the formula which are easy to determine in practical applications. The 1-D longitudinal model is implemented to calculate the dissipation of TDG in a reach of the Jinsha River. Good agreement is found between the calculated results and field data for both the dissipation coefficient and the dissipation process.展开更多
Experimental research of the heat and high-energy processes occurring in the cathode solid medium in the high voltage electric discharge system (electrolysis cell and glow discharge device) is presented. The experim...Experimental research of the heat and high-energy processes occurring in the cathode solid medium in the high voltage electric discharge system (electrolysis cell and glow discharge device) is presented. The experiments were carried out: Electrolysis in heavy water with a Pd cathode, electrolysis in light water with Ni and Pd cathodes, the glow discharge in deuterium with a Pd cathode. Excess heat was observed in experiments with high-voltage electrolysis (1,000 V or more). The experiments showed that the maximum excess heat power values of 5-8 W for glow discharge and 180-280 W for high-voltage electrolysis and heat efficiency up to 170% for glow discharge, and 800% for high-voltage electrolysis. The production of impurity nuclide yield showing a shift of up to a few per cent from natural isotopic abundances was detected by spark mass spectrometry and by secondary ionic mass spectrometry. The authors propose based on these experimental results a phenomenological model for low energy nuclear reaction.展开更多
N2O represents a popular oxidizer for hybrid rocket motors for a variety of reasons, including safety, ease of access and self-pressurization. It is often used as a saturated two-phase fluid in these applications to t...N2O represents a popular oxidizer for hybrid rocket motors for a variety of reasons, including safety, ease of access and self-pressurization. It is often used as a saturated two-phase fluid in these applications to take advantage of self-pressurization. Recent interest in using this oxidizer in regeneratively cooled engines requires a detailed heat transfer process analysis to the coolant, in order to quantify performance. Since the injection of N2O typically takes place in the two-phase region, our study focuses on heat transfer rates in this region, and extends the region to include superheated vapor. This analysis is critical for these cooling applications, because the exothermic decomposition nature of N2O also means that unchecked heating in the superheated region may result in a runaway reaction in the cooling passages. Furthermore, provided that sufficient heat transfer rates are available, N2O is expected to accelerate in the cooling passages due to Rayleigh flow effects much like those of a calorically perfect gas. The proximity of superheated N2O to its saturated vapor curve, at the conditions studied here, makes the suitability of a perfect gas model questionable, but that benchmarks is still useful. This paper presents the development of an experimental apparatus (a "Rayleigh tube"), specifically designed to study this problem, and test the analytical methods developed to model it. Since we focus on the development of the apparatus, the data presented were uses primarily calorically perfect gas surrogates, but the goal is to apply the apparatus and method to N2O. The design and construction of the Rayleigh tube is presented, along with preliminary results with perfect gases. Finally, we present preliminary results on heated N2O flow. Using a simple model for predicted dry-out point, we investigate where superheating may be expected to occur. We present estimates of critical heating and compare them to the heat required to achieve self-decomposition.展开更多
Using high pressure and geological condition simulation vessels, we conducted hydrous pyrolysis experiments of kerogen, solid bitumen and liquid hydrocarbons in southern China in order to study the processes of gas ge...Using high pressure and geological condition simulation vessels, we conducted hydrous pyrolysis experiments of kerogen, solid bitumen and liquid hydrocarbons in southern China in order to study the processes of gas generation and derive geo- chemical indicators of gas genesis under approximate pressure and temperature. The results indicate that gas generation productivity of different marine material decreased in the ganic matter (solid bitumen and heavy oil), and kerogen. order of crude oil (light oil and condensate), dispersed soluble or- Under identical temperature-pressure regimes, pyrolysates derived from kerogen and dispersed soluble organic matter display drastically different geochemical characteristics. For example, the δ13Cc02-δ13C1 values of gaseous products from dispersed soluble organic matter are greater than 20%o, whereas those from kerogen are less than 20%~. The 813C1 values of pyrolysates from different marine hydrocarbon sources generally increase with pyrolysis temperature, but are always lower than those of the source precursors. The δ13C values of ethane and propane in the pyrolysates also increase with increasing pyrolysis temperature, eventually approaching that of their sources, at peak hydro- carbon generation. At high-over mature stages, the δ13C values of ethane and propane are often greater than those of their sources but close to those of coal gases, and thus become ineffective as gas genetic indicators. Ln(CffC3) can clearly distin- guish kerogen degradation gas from oil cracking gas and Ln(CJC2)-(δ13C1-δ13C2) can be an effective indicator for distinguishing oil cracking gas from dispersed soluble organic matter cracking gas.展开更多
The influences of water media on the hydrogen isotopic composition of organic-thermogenic natural gas were tested in three series of experiments on coal pyrolysis, with no water, deionized water (δDH2O-58‰), and s...The influences of water media on the hydrogen isotopic composition of organic-thermogenic natural gas were tested in three series of experiments on coal pyrolysis, with no water, deionized water (δDH2O-58‰), and seawater (δSDn2O=-4.8‰) added, respectively. The experimental results show that the productivities of H2 and CO2 obviously increased under hydrous conditions and that the productivity of CH4 also remarkably increased in the high-evolution phase of hydrous experiments. Water was involved in the chemical reaction of hydrocarbon generation, and then the hydrogen isotopic composition of methane was affected. There is a linear correlation between the hydrogen isotopic composition of methane and its productivity, as reflected in the three series of experiments. In the case of the same CH4 productivity, the hydrogen isotopic composition of the methane produced in anhydrous experiments was the heaviest, that of the methane produced in seawater-adding experiments came second, and that of the methane produced in deionized water-adding experiments was the ligbtest. The hydrogen isotopic composition of natural gas/methane is affected by the following factors: 1) the characteristics of hydrogen isotopic composition of organic matter in source rocks, 2) the thermal evolution extent of organic matter, and 3) fossil-water media in the natural gas-generation period. The experimental results show that the influence of the fossil-water medium in the natural gas-generation period was lower than that of the other factors.展开更多
This paper describes an experimental investigation of pyrolysis of woody biomass mixture. The mixture consists of oak, beech, fir, cherry, walnut and linden wood chips with equal mass fractions. During the experiment,...This paper describes an experimental investigation of pyrolysis of woody biomass mixture. The mixture consists of oak, beech, fir, cherry, walnut and linden wood chips with equal mass fractions. During the experiment, the sample mass inside the reactor was 10 g with a particle diameter of 5-10 mm. The sample in the reactor was heated in the temperature range of 24-650℃. Average sample heating rates in the reactor were 21, 30 and 54 ℃/min. The sample mass before, during and after pyrolysis was determined using a digital scale. Experimental results of the sample mass change indicate that the highest yield of pyrolytic gas was achieved at the temperature slightly above 650℃ and ranged from 77 to 85%, while char yield ranged from 15 to 23%. Heating rate has sig- nificant influence on the pyrolytic gas and char yields. It was determined that higher pyrolysis temperatures and heating rates induce higher yields of pyrolytic gas, while the char mass reduces. Condensation of pyrolytic gas at the end of the pyrolysis process at 650℃ produced 2.4-2.72 g of liquid phase. The results obtained represent a starting basis for determining material and heat balance of pyrolysis process as well as woody biomass pyrolysis equipment.展开更多
This paper analyzes the effects of nanoporous surface on heat transfer temperaments of assorted thermal conductingmaterials. A phenomenal proposal of wielding the surface roughness to ameliorate the heat transfer rate...This paper analyzes the effects of nanoporous surface on heat transfer temperaments of assorted thermal conductingmaterials. A phenomenal proposal of wielding the surface roughness to ameliorate the heat transfer ratehas been discovered. The maximum increase of heat transfer rate procured by nanoporous layers is 133.3% higherthan the polished bare metals of surface roughness 0.2μm. This plays an imperative role in designing compact refrigerationsystems, chemical and thermal power plants. Experimental results picture a formidable upswing of58.3% heat transfer in chemically etched metals of surface roughness 3 μm, 133.3% in nanoporous surface of porosity75-95 nm formed by electrochemical anodization, and porosity of 40-50 nm formed by spray pyrolysis increasesthe heat transfer by 130%. Effects of porosity, flow velocity and scaling on the energy transfer are alsoscrutinized. This paper also analyzes the multifarious modes of nanoporous fabrication, to contrive both prodigiousand provident system.展开更多
Gas hydrate decomposition in sediments involves complicated multiphase flow and heat and mass transfer processes because of heat absorption by solid hydrates. Factors affecting gas hydrate decomposition in sediments i...Gas hydrate decomposition in sediments involves complicated multiphase flow and heat and mass transfer processes because of heat absorption by solid hydrates. Factors affecting gas hydrate decomposition in sediments include sediment type, mineral composition, pore size distribution, particle size, pore water composition, hydrate saturation distribution, initial formation pressure and temperature and cement characteristics. In this paper, experimental simulations of gas hydrate decomposition are carried out on an artificial core to investigate the effects of initial pressure and temperature, particle size and pore size. The experiments show that the characteristics of gas hydrate decomposition in sediments differ completely from those in a pure water system. The decomposition rate of hydrate sediments increases with the initial pressure increasing and decreasing temperatures. Furthermore, the decomposition rate of hydrate sediments decreases with decreasing particle size and increasing pore size.展开更多
文摘对比减压和常压条件下提取的柴胡挥发油在成分、含量及药效方面的差异,考察挥发油的品质,优选提取方法。采用气相色谱-质谱联用(GC-MS)法分析柴胡挥发油成分及其相对含量,再采用气相色谱法建立挥发油中己醛、庚醛、正辛醛和反式-2,4-癸二烯醛的含量检测方法,测定不同压力下提取的柴胡挥发油有效成分含量,通过背部皮下注射酵母混悬液复制大鼠发热模型,将常压、减压提取的柴胡挥发油溶于1%吐温80后腹腔注射给药,测定大鼠不同时间点的体温变化情况,利用单因素方差分析(Single factor analysis of variance)进行组间比较。结果显示:减压提取与常压提取的挥发油成分和含量存在差异,己醛、庚醛、正辛醛和反式-2,4-癸二烯醛在减压提取方法中的提取率更高,同时该方法提取的挥发油对干酵母引起的发热药效更显著。由此可见,减压提取能有效减少热敏性成分被破坏,提高有效成分的提取效率,提取的柴胡挥发油具有更显著的药效,品质优于常压提取。
基金Supported by Hong Kong RGC research grant(613808,614307)Hong Kong PhD Fellowship Scheme for Oyedun Adetoyese Olajire(PF09-05997)the Global Power and Energy Company Limited
文摘The analysis on the feedstock pyrolysis characteristic and the impacts of process parameters on pyrolysis outcomes can assist in the designing,operating and optimizing pyrolysis processes.This work aims to utilize both experimental and modelling approaches to perform the analysis on three biomass feedstocks—wood sawdust,bamboo shred and Jatropha Curcas seed cake residue,and to provide insights for the design and operation of pyrolysis processes.For the experimental part,the study investigated the effect of heating rate,final pyrolysis temperature and sample size on pyrolysis using common thermal analysis techniques.For the modelling part,a transient mathematical model that integrates the feedstock characteristic from the experimental study was used to simulate the pyrolysis progress of selected biomass feedstock particles for reactor scenarios.The model composes of several sub-models that describe pyrolysis kinetic and heat flow,particle heat transfer,particle shrinking and reactor operation.With better understanding of the effects of process conditions and feedstock characteristics on pyrolysis through both experimental and modelling studies,this work discusses on the considerations of and interrelation between feedstock size,pyrolysis energy usage,processing time and product quality for the design and operation of pyrolysis processes.
文摘Boiling of water/triethyleneglycol(TEG)binary solution has a wide-ranging application in the gas processing engineering.Design,operation and optimization of the involved boilers require accurate prediction of boiling heat transfer coefficient between surface and solution.In this investigation,nucleate pool boiling heat transfer coefficient has been experimentally measured on a horizontal rod heater in water/TEG binary solutions in a wide range of concentrations and heat fluxes under ambient condition.The present experimental data are correlated using major existing correlations.In addition a correlation is presented for prediction of pool boiling heat transfer for the system in which the vapour pressure of one component is negligible.This model is based on the mass transfer rate equation for prediction of the concentration at the bubble vapor/liquid interface.Based on this prediction,the temperature of the interface and accordingly,the boiling heat transfer coefficient could be straightforwardly calculated from the known concentration at the interface.It is shown that this simple model has sufficient accuracy and is acceptable below the medium concentrations of TEG when the vapor equilibrium concentration of TEG is almost zero.The presented model excludes any tuning parameter and requires very few physical properties to apply.
文摘In this experiment, lignite was refined and processed through binderless briquette preparation process from low-rank coal and became briquette. Then, lignite and its briquette were pyrolysed as materials to compare the nature of their pyrolysis. In this study, the experiment was carried out through a lab tube furnace, at a heating rate of 10 ~C/min, and the gas was analyzed and compared, which was collected at different temperatures. The results show that: in the pyrolysis temperature of 550-850 ℃, the semi-coke yield of briquette is 2%-6% higher than lignite, the tar yield of briquette is 2%-3% higher than lignite and the gas yield of briquette is 4%-9% less than lignite. The time required for complete release of the briquette is about 20 min less than lignite. The components in the pyrolysis gas of lignite and its briquette are the same, and their variation with the pyrolysis temperature is similar.
文摘Currently, thermal decomposition of hydrocarbons for the production of basic petrochemicals(ethylene, propylene) is carried out in steam-cracking processes. Aside from the conventional method, under consideration are alternative ways purposed for process intensification. In the context of these activities, the method of hightemperature pyrolysis of hydrocarbons in a heat-carrier flow is studied, which differs from previous ones and is based on the ability of an ultra-short time of feedstock/heat-carrier mixing. This enables to study the pyrolysis process at high temperature(up to 1500 K) at the reactor inlet. A set of model experiments is conducted on the lab scale facility. Liquefied petroleum gas(LPG) and naphtha are used as a feedstock. The detailed data are obtained on temperature and product distributions within a wide range of the residence time. A theoretical model based on the detailed kinetics of the process is developed, too. The effect of governing parameters on the pyrolysis process is analyzed by the results of the simulation and experiments. In particular, the optimal temperature is detected which corresponds to the maximum ethylene yield. Product yields in our experiments are compared with the similar ones in the conventional pyrolysis method. In both cases(LPG and naphtha), ethylene selectivity in the fast-mixing reactor is substantially higher than in current technology.
基金Projects(51179111,51279115)supported by the National Natural Science Foundation of ChinaProject(20110181110073)supported by the Doctoral Programs Foundation of Ministry of Education of China
文摘The elevated supersaturation of total dissolved gas (TDG) downstream of a high-dam spill has deleterious effects on fish in a large range. A one-dimensional (l-D) longitudinal model is optimal for the prediction of supersaturated TDG dissipation over a long distance. The key issue of the model is to determine the dissipation coefficient accurately. In agreement with field observations and experiment data, dimensional analysis and regression were performed to propose a formula for estimating the dissipation coefficient of supersaturated TDG in various rivers and reservoirs, and it involves the effects of the turbulence intensity, the hydro-pressure and the solid-liquid interface. The friction velocity, water depth, hydraulic radius and Froude number are independent variables in the formula which are easy to determine in practical applications. The 1-D longitudinal model is implemented to calculate the dissipation of TDG in a reach of the Jinsha River. Good agreement is found between the calculated results and field data for both the dissipation coefficient and the dissipation process.
文摘Experimental research of the heat and high-energy processes occurring in the cathode solid medium in the high voltage electric discharge system (electrolysis cell and glow discharge device) is presented. The experiments were carried out: Electrolysis in heavy water with a Pd cathode, electrolysis in light water with Ni and Pd cathodes, the glow discharge in deuterium with a Pd cathode. Excess heat was observed in experiments with high-voltage electrolysis (1,000 V or more). The experiments showed that the maximum excess heat power values of 5-8 W for glow discharge and 180-280 W for high-voltage electrolysis and heat efficiency up to 170% for glow discharge, and 800% for high-voltage electrolysis. The production of impurity nuclide yield showing a shift of up to a few per cent from natural isotopic abundances was detected by spark mass spectrometry and by secondary ionic mass spectrometry. The authors propose based on these experimental results a phenomenological model for low energy nuclear reaction.
文摘N2O represents a popular oxidizer for hybrid rocket motors for a variety of reasons, including safety, ease of access and self-pressurization. It is often used as a saturated two-phase fluid in these applications to take advantage of self-pressurization. Recent interest in using this oxidizer in regeneratively cooled engines requires a detailed heat transfer process analysis to the coolant, in order to quantify performance. Since the injection of N2O typically takes place in the two-phase region, our study focuses on heat transfer rates in this region, and extends the region to include superheated vapor. This analysis is critical for these cooling applications, because the exothermic decomposition nature of N2O also means that unchecked heating in the superheated region may result in a runaway reaction in the cooling passages. Furthermore, provided that sufficient heat transfer rates are available, N2O is expected to accelerate in the cooling passages due to Rayleigh flow effects much like those of a calorically perfect gas. The proximity of superheated N2O to its saturated vapor curve, at the conditions studied here, makes the suitability of a perfect gas model questionable, but that benchmarks is still useful. This paper presents the development of an experimental apparatus (a "Rayleigh tube"), specifically designed to study this problem, and test the analytical methods developed to model it. Since we focus on the development of the apparatus, the data presented were uses primarily calorically perfect gas surrogates, but the goal is to apply the apparatus and method to N2O. The design and construction of the Rayleigh tube is presented, along with preliminary results with perfect gases. Finally, we present preliminary results on heated N2O flow. Using a simple model for predicted dry-out point, we investigate where superheating may be expected to occur. We present estimates of critical heating and compare them to the heat required to achieve self-decomposition.
基金supported by Petroleum & Chemical United Fund Project(Grant No. 40739902)
文摘Using high pressure and geological condition simulation vessels, we conducted hydrous pyrolysis experiments of kerogen, solid bitumen and liquid hydrocarbons in southern China in order to study the processes of gas generation and derive geo- chemical indicators of gas genesis under approximate pressure and temperature. The results indicate that gas generation productivity of different marine material decreased in the ganic matter (solid bitumen and heavy oil), and kerogen. order of crude oil (light oil and condensate), dispersed soluble or- Under identical temperature-pressure regimes, pyrolysates derived from kerogen and dispersed soluble organic matter display drastically different geochemical characteristics. For example, the δ13Cc02-δ13C1 values of gaseous products from dispersed soluble organic matter are greater than 20%o, whereas those from kerogen are less than 20%~. The 813C1 values of pyrolysates from different marine hydrocarbon sources generally increase with pyrolysis temperature, but are always lower than those of the source precursors. The δ13C values of ethane and propane in the pyrolysates also increase with increasing pyrolysis temperature, eventually approaching that of their sources, at peak hydro- carbon generation. At high-over mature stages, the δ13C values of ethane and propane are often greater than those of their sources but close to those of coal gases, and thus become ineffective as gas genetic indicators. Ln(CffC3) can clearly distin- guish kerogen degradation gas from oil cracking gas and Ln(CJC2)-(δ13C1-δ13C2) can be an effective indicator for distinguishing oil cracking gas from dispersed soluble organic matter cracking gas.
基金supported jointly by National Natural Science Foundation of China (Grant No. 40703001) the "Western Doctors’ Project under the Western Light Program" sponsored by the Chinese Academy of Sciences
文摘The influences of water media on the hydrogen isotopic composition of organic-thermogenic natural gas were tested in three series of experiments on coal pyrolysis, with no water, deionized water (δDH2O-58‰), and seawater (δSDn2O=-4.8‰) added, respectively. The experimental results show that the productivities of H2 and CO2 obviously increased under hydrous conditions and that the productivity of CH4 also remarkably increased in the high-evolution phase of hydrous experiments. Water was involved in the chemical reaction of hydrocarbon generation, and then the hydrogen isotopic composition of methane was affected. There is a linear correlation between the hydrogen isotopic composition of methane and its productivity, as reflected in the three series of experiments. In the case of the same CH4 productivity, the hydrogen isotopic composition of the methane produced in anhydrous experiments was the heaviest, that of the methane produced in seawater-adding experiments came second, and that of the methane produced in deionized water-adding experiments was the ligbtest. The hydrogen isotopic composition of natural gas/methane is affected by the following factors: 1) the characteristics of hydrogen isotopic composition of organic matter in source rocks, 2) the thermal evolution extent of organic matter, and 3) fossil-water media in the natural gas-generation period. The experimental results show that the influence of the fossil-water medium in the natural gas-generation period was lower than that of the other factors.
基金Partially financed by the Ministry of Education,Science and Technological Development of the Republic of Serbia
文摘This paper describes an experimental investigation of pyrolysis of woody biomass mixture. The mixture consists of oak, beech, fir, cherry, walnut and linden wood chips with equal mass fractions. During the experiment, the sample mass inside the reactor was 10 g with a particle diameter of 5-10 mm. The sample in the reactor was heated in the temperature range of 24-650℃. Average sample heating rates in the reactor were 21, 30 and 54 ℃/min. The sample mass before, during and after pyrolysis was determined using a digital scale. Experimental results of the sample mass change indicate that the highest yield of pyrolytic gas was achieved at the temperature slightly above 650℃ and ranged from 77 to 85%, while char yield ranged from 15 to 23%. Heating rate has sig- nificant influence on the pyrolytic gas and char yields. It was determined that higher pyrolysis temperatures and heating rates induce higher yields of pyrolytic gas, while the char mass reduces. Condensation of pyrolytic gas at the end of the pyrolysis process at 650℃ produced 2.4-2.72 g of liquid phase. The results obtained represent a starting basis for determining material and heat balance of pyrolysis process as well as woody biomass pyrolysis equipment.
文摘This paper analyzes the effects of nanoporous surface on heat transfer temperaments of assorted thermal conductingmaterials. A phenomenal proposal of wielding the surface roughness to ameliorate the heat transfer ratehas been discovered. The maximum increase of heat transfer rate procured by nanoporous layers is 133.3% higherthan the polished bare metals of surface roughness 0.2μm. This plays an imperative role in designing compact refrigerationsystems, chemical and thermal power plants. Experimental results picture a formidable upswing of58.3% heat transfer in chemically etched metals of surface roughness 3 μm, 133.3% in nanoporous surface of porosity75-95 nm formed by electrochemical anodization, and porosity of 40-50 nm formed by spray pyrolysis increasesthe heat transfer by 130%. Effects of porosity, flow velocity and scaling on the energy transfer are alsoscrutinized. This paper also analyzes the multifarious modes of nanoporous fabrication, to contrive both prodigiousand provident system.
基金supported by the National Basic Research Program of China (Grant No. 2009CB219507)
文摘Gas hydrate decomposition in sediments involves complicated multiphase flow and heat and mass transfer processes because of heat absorption by solid hydrates. Factors affecting gas hydrate decomposition in sediments include sediment type, mineral composition, pore size distribution, particle size, pore water composition, hydrate saturation distribution, initial formation pressure and temperature and cement characteristics. In this paper, experimental simulations of gas hydrate decomposition are carried out on an artificial core to investigate the effects of initial pressure and temperature, particle size and pore size. The experiments show that the characteristics of gas hydrate decomposition in sediments differ completely from those in a pure water system. The decomposition rate of hydrate sediments increases with the initial pressure increasing and decreasing temperatures. Furthermore, the decomposition rate of hydrate sediments decreases with decreasing particle size and increasing pore size.