Methods and techniques for the identification, monitoring and management of natural hazards in high mountain areas are enumerated and described. A case study from the western Himalayan Kullu District in Himachal Prade...Methods and techniques for the identification, monitoring and management of natural hazards in high mountain areas are enumerated and described. A case study from the western Himalayan Kullu District in Himachal Pradesh, India is used to illustrate some of the methods. Research on the general topic has been conducted over three decades and that in the Kullu District has been carried out since 1994. Early methods of hazards identification in high mountain areas involved intensive and lengthy fieldwork and mapping with primary reliance on interpretation of landforms, sediments and vegetation thought to be indicative of slope failures, rock falls, debris flows, floods and accelerated soil surface erosion. Augmented by the use of airphotos and ad hoc observations of specific events over time, these methods resulted in the gradual accumulation of information on hazardous sites and the beginnings of a chronology of occurrences in an area. The use of historical methods applied to written and photographic material, often held in archives and libraries, further improved the resolution of hazards information. In the past two decades, both the need for, and the ability to, accurately identify potential hazards have increased. The need for accurate information and monitoring comes about as a result of rapid growth in population, settlements, transportation infrastructure and intensified land uses and, therefore, risk and vulnerability in mountain areas. Ability has improved as the traditional methods of gathering and manipulating data have been supplemented by the use of remote sensing, automated terrain modeling, global positioning systems and geographical information systems. This paper focuses on the development and application of the latter methods and techniques to characterize and monitor hazards in high mountain areas.展开更多
A new analytical expression is presented for the instantaneous power Probability Density Function (PDF) of receiver signals over composite K-u/gamma fading channels. Moreover, the exact expression of channel capacit...A new analytical expression is presented for the instantaneous power Probability Density Function (PDF) of receiver signals over composite K-u/gamma fading channels. Moreover, the exact expression of channel capacity is derived in the form of an infinite series, while an accurate approximation expression is obtained in closed form. To reveal the implications of the model parameters on capacity, we provide an expression for the case of a high-SNR environment. The relationship of the presented results with previously reported results on generalised-K and K fading channels is also discussed. Finally, numerical and simulation results are presented to prove the correctness of our derived expressions.展开更多
We find exact solutions to the Klein-Gordon equation in the vicinity of Schwarzschild black holes.For particles with a zero angular momentum,the convergence range of the solution is r < 4M.One of the solutions desc...We find exact solutions to the Klein-Gordon equation in the vicinity of Schwarzschild black holes.For particles with a zero angular momentum,the convergence range of the solution is r < 4M.One of the solutions describes an exponential enhancement of the density of particles in the vicinity of Schwarzschild black holes,which might be the mechanism of gamma-ray bursts.展开更多
文摘Methods and techniques for the identification, monitoring and management of natural hazards in high mountain areas are enumerated and described. A case study from the western Himalayan Kullu District in Himachal Pradesh, India is used to illustrate some of the methods. Research on the general topic has been conducted over three decades and that in the Kullu District has been carried out since 1994. Early methods of hazards identification in high mountain areas involved intensive and lengthy fieldwork and mapping with primary reliance on interpretation of landforms, sediments and vegetation thought to be indicative of slope failures, rock falls, debris flows, floods and accelerated soil surface erosion. Augmented by the use of airphotos and ad hoc observations of specific events over time, these methods resulted in the gradual accumulation of information on hazardous sites and the beginnings of a chronology of occurrences in an area. The use of historical methods applied to written and photographic material, often held in archives and libraries, further improved the resolution of hazards information. In the past two decades, both the need for, and the ability to, accurately identify potential hazards have increased. The need for accurate information and monitoring comes about as a result of rapid growth in population, settlements, transportation infrastructure and intensified land uses and, therefore, risk and vulnerability in mountain areas. Ability has improved as the traditional methods of gathering and manipulating data have been supplemented by the use of remote sensing, automated terrain modeling, global positioning systems and geographical information systems. This paper focuses on the development and application of the latter methods and techniques to characterize and monitor hazards in high mountain areas.
基金supported by the National NatNatural Science Foundation of China under Grants No. 61132003,No. 61101237the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No. 2012D07
文摘A new analytical expression is presented for the instantaneous power Probability Density Function (PDF) of receiver signals over composite K-u/gamma fading channels. Moreover, the exact expression of channel capacity is derived in the form of an infinite series, while an accurate approximation expression is obtained in closed form. To reveal the implications of the model parameters on capacity, we provide an expression for the case of a high-SNR environment. The relationship of the presented results with previously reported results on generalised-K and K fading channels is also discussed. Finally, numerical and simulation results are presented to prove the correctness of our derived expressions.
基金supported by the National Natural Science Foundation of China (Grant No. 11073007)
文摘We find exact solutions to the Klein-Gordon equation in the vicinity of Schwarzschild black holes.For particles with a zero angular momentum,the convergence range of the solution is r < 4M.One of the solutions describes an exponential enhancement of the density of particles in the vicinity of Schwarzschild black holes,which might be the mechanism of gamma-ray bursts.