In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflec...In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.展开更多
Endothermic hydrocarbon fuels are advanced coolants for high-temperature structures of spacecraft. No data of tested-cooling-ability of endothermic fuels have been broadly discussed in literature. In this work a high-...Endothermic hydrocarbon fuels are advanced coolants for high-temperature structures of spacecraft. No data of tested-cooling-ability of endothermic fuels have been broadly discussed in literature. In this work a high-temperature flow calorimeter was designed, and the cooling capacity of six different hydrocarbon fuels were measured. Experimental results showed that these hydrocarbon fuels have capacity for cooling high-temperature structures, and that the cooling capacity of fuel N-1 can reach 3.15 M J/kg, which can nearly satisfy the requirement of thermal management for a Mach 3 cruise aircraft, whose heat sink requirement is about 3.5 M J/kg. The endothermic velocity of hydrocarbon fuels was also measured by the calorimeter.展开更多
The properties of dissolution in different solvents,the specific heat capacity and thermal decomposition process under the non-isothermal conditions for energetic triazole ionic salts 1,2,4-triazolium nitrate(1a),1,2,...The properties of dissolution in different solvents,the specific heat capacity and thermal decomposition process under the non-isothermal conditions for energetic triazole ionic salts 1,2,4-triazolium nitrate(1a),1,2,3-triazolium nitrate(1b),3,4,5triamino-1,2,4-triazolium nitrate(2a),3,4,5-triamino-1,2,4-triazolium dinitramide(2b)were precisely measured using a Calvet Microcalorimeter.The thermochemical equation,differential enthalpies of dissolution(△difH m ),standard molar enthalpies of dissolution(△difH m ),apparent activation energy(E),pre-exponential constant(A),kinetic equation,linear relationship of specific heat capacity with temperature over the temperature range from 283 to 353 K,standard molar heat capacity(C p,m)and enthalpy,entropy and Gibbs free energy at 283–353 K,taking 298.15 K as the benchmark for 1a,1b,2a and 2b were obtained with treating experimental data and theoretical calculation method.The kinetic and thermodynamic parameters of thermal decomposition reaction,critical temperature of thermal explosion(Tb),self-accelerating decomposition temperature(TSADT)and adiabatic time-to-explosion(t)of 1a,1b,2a and 2b were calculated.Their heat-resistance abilities were evaluated.Information was obtained on the relation between molecular structures and properties of 1a,1b,2a and 2b.展开更多
This study focuses on the stress and displacement of a circular opening that is excavated in a strain-softening rock mass under hydraulic-mechanical coupling.It follows the generalized Hoek-Brown(H-B) failure criterio...This study focuses on the stress and displacement of a circular opening that is excavated in a strain-softening rock mass under hydraulic-mechanical coupling.It follows the generalized Hoek-Brown(H-B) failure criterion.Moreover,an improved numerical method and stepwise procedure are proposed.This method considers the deterioration of the strength,deformation,and dilation angle.It also incorporates the hydraulic-mechanical coupling and the variation of elastic strain in the plastic region.Several examples are conducted to demonstrate the validity and accuracy of the proposed solution through MATLAB programming and FLAC software.Parametric studies are also conducted to highlight the influence of hydraulic–mechanical coupling on stress and displacement.Results show that in this case,stress confinement is lower and tunnel convergences are higher than the corresponding stresses and displacements obtained when those factors are not considered.The displacement and plastic radius are also larger than those obtained when hydraulic-mechanical coupling is not considered.展开更多
The dependence of dislocation mobility on stress is the fundamental ingredient for the deformation in crystalline materials. Strength and ductility, the two most important properties characterizing mechanical behavior...The dependence of dislocation mobility on stress is the fundamental ingredient for the deformation in crystalline materials. Strength and ductility, the two most important properties characterizing mechanical behavior of crystalline metals, are in general governed by dislocation motion. Recording the position of a moving dislocation in a short time window is still challenging, and direct observations which enable us to deduce the speed-stress relationship of dislocations are still missing. Using large-scale molecular dynamics simulations, we obtain the motion of an obstacle-free twinning partial dislocation in face centred cubic crystals with spatial resolution at the angstrom scale and picosecond temporal information. The dislocation exhibits two limiting speeds: the first is subsonic and occurs when the resolved shear stress is on the order of hundreds of megapascal. While the stress is raised to gigapascal level, an abrupt jump of dislocation velocity occurs, from subsonic to supersonic regime. The two speed limits are governed respectively by the local transverse and longitudinal phonons associated with the stressed dislocation, as the two types of phonons facilitate dislocation gliding at different stress levels.展开更多
基金Projects 50221402, 50490271 and 50025413 supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China (2009CB219603, 2009 CB724601, 2006CB202209 and 2005CB221500)+1 种基金the Key Project of the Ministry of Education (306002)the Program for Changjiang Scholars and Innovative Research Teams in Universities of MOE (IRT0408)
文摘In order to carry out numerical simulation using geologic structural data obtained from Landmark(seismic interpretation system), underground geological structures are abstracted into mechanical models which can reflect actual situations and facilitate their computation and analyses.Given the importance of model building, further processing methods about traditional seismic interpretation results from Landmark should be studied and the processed result can then be directly used in numerical simulation computations.Through this data conversion procedure, Landmark and FLAC(the international general stress software) are seamlessly connected.Thus, the format conversion between the two systems and the pre-and post-processing in simulation computation is realized.A practical application indicates that this method has many advantages such as simple operation, high accuracy of the element subdivision and high speed, which may definitely satisfy the actual needs of floor grid cutting.
基金Project (No. 863-2-1-1-7) supported by the Hi-Tech Research and Development Program (863) of China
文摘Endothermic hydrocarbon fuels are advanced coolants for high-temperature structures of spacecraft. No data of tested-cooling-ability of endothermic fuels have been broadly discussed in literature. In this work a high-temperature flow calorimeter was designed, and the cooling capacity of six different hydrocarbon fuels were measured. Experimental results showed that these hydrocarbon fuels have capacity for cooling high-temperature structures, and that the cooling capacity of fuel N-1 can reach 3.15 M J/kg, which can nearly satisfy the requirement of thermal management for a Mach 3 cruise aircraft, whose heat sink requirement is about 3.5 M J/kg. The endothermic velocity of hydrocarbon fuels was also measured by the calorimeter.
基金supported by the National Natural Science Foundation of China (20573098)the Science and Technology Foundation of National Key Lab of Science and Technology on Combustion and Explosion in China (9140C3503030805)
文摘The properties of dissolution in different solvents,the specific heat capacity and thermal decomposition process under the non-isothermal conditions for energetic triazole ionic salts 1,2,4-triazolium nitrate(1a),1,2,3-triazolium nitrate(1b),3,4,5triamino-1,2,4-triazolium nitrate(2a),3,4,5-triamino-1,2,4-triazolium dinitramide(2b)were precisely measured using a Calvet Microcalorimeter.The thermochemical equation,differential enthalpies of dissolution(△difH m ),standard molar enthalpies of dissolution(△difH m ),apparent activation energy(E),pre-exponential constant(A),kinetic equation,linear relationship of specific heat capacity with temperature over the temperature range from 283 to 353 K,standard molar heat capacity(C p,m)and enthalpy,entropy and Gibbs free energy at 283–353 K,taking 298.15 K as the benchmark for 1a,1b,2a and 2b were obtained with treating experimental data and theoretical calculation method.The kinetic and thermodynamic parameters of thermal decomposition reaction,critical temperature of thermal explosion(Tb),self-accelerating decomposition temperature(TSADT)and adiabatic time-to-explosion(t)of 1a,1b,2a and 2b were calculated.Their heat-resistance abilities were evaluated.Information was obtained on the relation between molecular structures and properties of 1a,1b,2a and 2b.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB036004)the National Natural Science Foundation of China(Grant No.51208523)China Postdoctoral Science Foundation(Grant No.2003034468)
文摘This study focuses on the stress and displacement of a circular opening that is excavated in a strain-softening rock mass under hydraulic-mechanical coupling.It follows the generalized Hoek-Brown(H-B) failure criterion.Moreover,an improved numerical method and stepwise procedure are proposed.This method considers the deterioration of the strength,deformation,and dilation angle.It also incorporates the hydraulic-mechanical coupling and the variation of elastic strain in the plastic region.Several examples are conducted to demonstrate the validity and accuracy of the proposed solution through MATLAB programming and FLAC software.Parametric studies are also conducted to highlight the influence of hydraulic–mechanical coupling on stress and displacement.Results show that in this case,stress confinement is lower and tunnel convergences are higher than the corresponding stresses and displacements obtained when those factors are not considered.The displacement and plastic radius are also larger than those obtained when hydraulic-mechanical coupling is not considered.
基金supported by the National Natural Science Foundation of China(Grant No.11425211)
文摘The dependence of dislocation mobility on stress is the fundamental ingredient for the deformation in crystalline materials. Strength and ductility, the two most important properties characterizing mechanical behavior of crystalline metals, are in general governed by dislocation motion. Recording the position of a moving dislocation in a short time window is still challenging, and direct observations which enable us to deduce the speed-stress relationship of dislocations are still missing. Using large-scale molecular dynamics simulations, we obtain the motion of an obstacle-free twinning partial dislocation in face centred cubic crystals with spatial resolution at the angstrom scale and picosecond temporal information. The dislocation exhibits two limiting speeds: the first is subsonic and occurs when the resolved shear stress is on the order of hundreds of megapascal. While the stress is raised to gigapascal level, an abrupt jump of dislocation velocity occurs, from subsonic to supersonic regime. The two speed limits are governed respectively by the local transverse and longitudinal phonons associated with the stressed dislocation, as the two types of phonons facilitate dislocation gliding at different stress levels.