本文研究了一类高非线性的带Poisson跳的随机时变时滞微分方程。运用Lyapunov函数方法、随机分析和代数不等式技巧,研究了该类方程全局解的存在性。This paper investigates a class of stochastic time-varying delay differential equ...本文研究了一类高非线性的带Poisson跳的随机时变时滞微分方程。运用Lyapunov函数方法、随机分析和代数不等式技巧,研究了该类方程全局解的存在性。This paper investigates a class of stochastic time-varying delay differential equations(STVDEs) with Poisson jump. By employing the Lyapunov functions method, stochas-tic analysis and algebraic inequality techniques, the existence of the global solution toa STVDE with Poisson jump is obtained.展开更多
研究GBBM方程ut-aΔut-bΔu+ F(u)+γu=h(x),其中F(u)=(F1(u),…,Fn(u)), F / xiFi,Fi(0)=0,Fi是R1上二阶导数连续的函数,fi(s)=d/dsFi(s),fi满足fi(0)=0,|fi(s)|<c(1=∑ni=1+|s|m),i=1,…,n,其中当n 2时,0 m<∞;当n 3时,0 m ...研究GBBM方程ut-aΔut-bΔu+ F(u)+γu=h(x),其中F(u)=(F1(u),…,Fn(u)), F / xiFi,Fi(0)=0,Fi是R1上二阶导数连续的函数,fi(s)=d/dsFi(s),fi满足fi(0)=0,|fi(s)|<c(1=∑ni=1+|s|m),i=1,…,n,其中当n 2时,0 m<∞;当n 3时,0 m 2/(n-2).在空间Rn上整体解的存在唯一性用Galerkin逼近方法和作极限的方法获得.展开更多
文摘本文研究了一类高非线性的带Poisson跳的随机时变时滞微分方程。运用Lyapunov函数方法、随机分析和代数不等式技巧,研究了该类方程全局解的存在性。This paper investigates a class of stochastic time-varying delay differential equations(STVDEs) with Poisson jump. By employing the Lyapunov functions method, stochas-tic analysis and algebraic inequality techniques, the existence of the global solution toa STVDE with Poisson jump is obtained.
基金Supported by the National Science Foundation of China(1147229811401574)+2 种基金the Fundamental Research Funds for the Central Universities(3122013K005)the National Science Foundation of Tianjin City(13JCQNJC04400)the Civil Aviation University of China Research Funds(2012KYM05)
文摘研究GBBM方程ut-aΔut-bΔu+ F(u)+γu=h(x),其中F(u)=(F1(u),…,Fn(u)), F / xiFi,Fi(0)=0,Fi是R1上二阶导数连续的函数,fi(s)=d/dsFi(s),fi满足fi(0)=0,|fi(s)|<c(1=∑ni=1+|s|m),i=1,…,n,其中当n 2时,0 m<∞;当n 3时,0 m 2/(n-2).在空间Rn上整体解的存在唯一性用Galerkin逼近方法和作极限的方法获得.