期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
全球大气再分析实时资料前处理关键技术研制 被引量:1
1
作者 姚燕 姜立鹏 +3 位作者 祝婷 张涛 姚爽 张志森 《气象科学》 北大核心 2022年第5期703-710,共8页
针对全球实时气象数据,重点研制面向全球大气再分析的观测资料前处理关键技术,主要包括实现大量实时文件快速解析分类的数据分拣技术,实现多类气象观测要素并行解码的信息提取技术,满足同化数据格式需求和实现分级分类有效存储的自定义... 针对全球实时气象数据,重点研制面向全球大气再分析的观测资料前处理关键技术,主要包括实现大量实时文件快速解析分类的数据分拣技术,实现多类气象观测要素并行解码的信息提取技术,满足同化数据格式需求和实现分级分类有效存储的自定义模板统一编码技术。关键技术已于2019年6月在国家气象信息中心业务应用,为我国第一代全球大气和陆面再分析业务提供着稳定的实时观测数据支撑。 展开更多
关键词 实时数据 数据分拣 解码池 统一编码
下载PDF
Low-dose CT image denoising method based on generative adversarial network
2
作者 JIAO Fengyuan YANG Zhixiu +1 位作者 SHI Shaojie CAO Weiguo 《Journal of Measurement Science and Instrumentation》 CAS 2024年第4期490-498,共9页
In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial netw... In order to solve the problems of artifacts and noise in low-dose computed tomography(CT)images in clinical medical diagnosis,an improved image denoising algorithm under the architecture of generative adversarial network(GAN)was proposed.First,a noise model based on style GAN2 was constructed to estimate the real noise distribution,and the noise information similar to the real noise distribution was generated as the experimental noise data set.Then,a network model with encoder-decoder architecture as the core based on GAN idea was constructed,and the network model was trained with the generated noise data set until it reached the optimal value.Finally,the noise and artifacts in low-dose CT images could be removed by inputting low-dose CT images into the denoising network.The experimental results showed that the constructed network model based on GAN architecture improved the utilization rate of noise feature information and the stability of network training,removed image noise and artifacts,and reconstructed image with rich texture and realistic visual effect. 展开更多
关键词 low-dose CT image generative adversarial network noise and artifacts encoder-decoder atrous spatial pyramid pooling(ASPP)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部