An integrable (2+1)-dimensional coupled mKdV equation is decomposed into two (1 +1)-dimensional soliton systems, which is produced from the compatible condition of three spectral problems. With the help of decom...An integrable (2+1)-dimensional coupled mKdV equation is decomposed into two (1 +1)-dimensional soliton systems, which is produced from the compatible condition of three spectral problems. With the help of decomposition and the Darboux transformation of two (1+1)-dimensional soliton systems, some interesting explicit solutions of these soliton equations are obtained.展开更多
Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the d...Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.展开更多
In this paper, a coupled elliptic-parabolic system modeling a class of engineering problems with thermal effect is studied. Existence of a weak solution is first established through a result of Meyers' theorem and Sc...In this paper, a coupled elliptic-parabolic system modeling a class of engineering problems with thermal effect is studied. Existence of a weak solution is first established through a result of Meyers' theorem and Schauder fixed point theorem, where the coupled functions σ(s),k(s) are assumed to be bounded in the C(IR×(0, T)). If σ(s),k(s) are Lipschitz continuous we prove that solution is unique under some restriction on integrability of solution. The regularity of the solution in dimension n ≤ 2 is then analyzed under the assumptions on σ(s) ∈w^1,∞(Ω×(0, T)) and the boundedness of σ'(s) and σ″(s).展开更多
Using improved homogeneous balance method, we obtain new exact solutions for the coupled integrable dispersionless equation. On the basis of these exact solutions, we find some new interesting coherent structures by s...Using improved homogeneous balance method, we obtain new exact solutions for the coupled integrable dispersionless equation. On the basis of these exact solutions, we find some new interesting coherent structures by selecting arbitrary functions appropriately.展开更多
The new method proposed recently by Friedberg, Lee, and Zhao is extended to obtain an analytic expansion for the ground-state wavefunction of a time-dependent strong-coupling Schroedinger equation. Two different types...The new method proposed recently by Friedberg, Lee, and Zhao is extended to obtain an analytic expansion for the ground-state wavefunction of a time-dependent strong-coupling Schroedinger equation. Two different types of the time-dependent harmonic oscillators are considered as examples for application of the time-dependent expansion. It is show that the time-dependent strong-coupling expansion is applicable to the time-dependent harmonic oscillators with a slowly varying time-dependent parameter.展开更多
This paper shows detailed steps for modeling a quadcopter with Euler-Lagrange equations, followed by controlling it with intelligent control that includes states decoupling. In addition, this control shows non-convent...This paper shows detailed steps for modeling a quadcopter with Euler-Lagrange equations, followed by controlling it with intelligent control that includes states decoupling. In addition, this control shows non-conventional membership functions for the most instable states, in order to get a fast and effective response.展开更多
In this paper, we consider the problem (θ(x,U))_t=(K(x,U)U_x)_x-(K(x,U))_x (x,t)∈G_T (θ(x,U)V(x,t))_t=(DθV_x)_x+(V(KU_x-K))_x,(x,t)∈G_T, u(x,0)=u_0(x),V(x,0),(x,0)=V_0(x),0≤x≤2, U(0,t)=h_0(t),U(2,t)=h_2(t),0≤t...In this paper, we consider the problem (θ(x,U))_t=(K(x,U)U_x)_x-(K(x,U))_x (x,t)∈G_T (θ(x,U)V(x,t))_t=(DθV_x)_x+(V(KU_x-K))_x,(x,t)∈G_T, u(x,0)=u_0(x),V(x,0),(x,0)=V_0(x),0≤x≤2, U(0,t)=h_0(t),U(2,t)=h_2(t),0≤t≤T, V(0,t)=g_0(t),V(2,t)=g_2(t),0≤t≤T. Where, θ(x,U)=θ_1(x,U) when (x,t)∈D_1={0≤x<1,0≤t≤T};θ(x,U)=θ_2(x,U),(x,t)∈D_2={1<x≤2,0≤t≤T}.K(x,U)=K_i(x,U),(x,t)∈D_i. θ_i, K_i are the Moisture content and hy draulic conductivity of porous Media on D_i respectively. V be the the concentration of solute in the fluid. In addition we also require that U, V, (K(x,U)U_x-1) and DθV_x+V(KU_x-K) are continu ous at x=1. We prove the exisence, uniqueness and large time behavior of the problem by the method of reg ularization.展开更多
More new exact solutions for a class of nonlinear coupled differential equations are obtained by using a direct and efficient hyperbola function transform method based on the idea of the extended homogeneous balance m...More new exact solutions for a class of nonlinear coupled differential equations are obtained by using a direct and efficient hyperbola function transform method based on the idea of the extended homogeneous balance method.展开更多
In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t...In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.展开更多
In this paper, the existence of the exponential attractors for the Ginzburg- Landau-BBM equations with periodic initial and boundary conditions are obtained by using the squeezing property and the operator dccompositi...In this paper, the existence of the exponential attractors for the Ginzburg- Landau-BBM equations with periodic initial and boundary conditions are obtained by using the squeezing property and the operator dccomposition method.展开更多
The purpose of this study is to set up a dynamically linked 1D and 2D hydrodynamic and sediment transport models for dam break flow.The 1D-2D coupling model solves the generalized shallow water equations,the non-equil...The purpose of this study is to set up a dynamically linked 1D and 2D hydrodynamic and sediment transport models for dam break flow.The 1D-2D coupling model solves the generalized shallow water equations,the non-equilibrium sediment transport and bed change equations in a coupled fashion using an explicit finite volume method.It considers interactions among transient flow,strong sediment transport and rapid bed change by including bed change and variable flow density in the flow continuity and momentum equations.An unstructured Quadtree rectangular grid with local refinement is used in the 2D model.The intercell flux is computed by the HLL approximate Riemann solver with shock captured capability for computing the dry-to-wet interface for all models.The effects of pressure and gravity are included in source term in this coupling model which can simplify the computation and eliminate numerical imbalance between source and flux terms.The developed model has been tested against experimental and real-life case of dam-break flow over fix bed and movable bed.The results are compared with analytical solution and measured data with good agreement.The simulation results demonstrate that the coupling model is capable of calculating the flow,erosion and deposition for dam break flows in complicated natural domains.展开更多
基金the Special Funds for Major State Basic Research Project of China under No.G2000077301
文摘An integrable (2+1)-dimensional coupled mKdV equation is decomposed into two (1 +1)-dimensional soliton systems, which is produced from the compatible condition of three spectral problems. With the help of decomposition and the Darboux transformation of two (1+1)-dimensional soliton systems, some interesting explicit solutions of these soliton equations are obtained.
基金*Supported by the National Natural Science Foundation of China under Grant No. 60772023, by the Open Fund of the State Key Laboratory of Software Development Environment under Grant No. SKLSDE-07-001, Beijing University of Aeronautics and Astronautics, by the National Basic Research Program of China (973 Program) under Grant No. 2005CB321901, and by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos. 20060006024 and 200800130006, Chinese Ministry of Education.
文摘Kortweg-de Vries (KdV)-typed equations have been used to describe certain nonlinear phenomena in fluids and plasmas. Generalized complex coupled KdV (GCCKdV) equations are investigated in this paper. Through the dependent variable transformations and symbolic computation, GCCKdV equations are transformed into their bilinear forms, based on which the one- and two-soliton solutions are obtained. Through the interactions of two solitons, the regular elastic collision are shown. When the wave numbers are complex, three kinds of solitonie collisions are presented: (i) two solitons merge and separate from each other periodically; (ii) two solitons exhibit the attraction and repulsion nearly twice, and finally separate from each other after such type of interaction; (iii) two solitons are ftuctuant in the central region of the collision. Propagation features of solitons are investigated with the effects of the coefficients in the GCCKdV equations considered. Velocity of soliton increase with the a increasing. Amplitude of v increase with the a increasing and decrease with the β increasing.
基金Foundation item: Supported by the National Natural Science Foundation of China(40537034)
文摘In this paper, a coupled elliptic-parabolic system modeling a class of engineering problems with thermal effect is studied. Existence of a weak solution is first established through a result of Meyers' theorem and Schauder fixed point theorem, where the coupled functions σ(s),k(s) are assumed to be bounded in the C(IR×(0, T)). If σ(s),k(s) are Lipschitz continuous we prove that solution is unique under some restriction on integrability of solution. The regularity of the solution in dimension n ≤ 2 is then analyzed under the assumptions on σ(s) ∈w^1,∞(Ω×(0, T)) and the boundedness of σ'(s) and σ″(s).
基金Supported by Colleges and Universities Scientific Research Foundation of Inner Mongolia Autonomous Region under Grant N0. NJZY07139Natural Science Foundation of Inner Mongolia Autonomous Region under Grant No. 200408020113
文摘Using improved homogeneous balance method, we obtain new exact solutions for the coupled integrable dispersionless equation. On the basis of these exact solutions, we find some new interesting coherent structures by selecting arbitrary functions appropriately.
基金Supported by the National Natural Science Foundation of China under Grant No.10905019the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT,No.IRT0964)the Construct Program of the National Key Discipline
文摘The new method proposed recently by Friedberg, Lee, and Zhao is extended to obtain an analytic expansion for the ground-state wavefunction of a time-dependent strong-coupling Schroedinger equation. Two different types of the time-dependent harmonic oscillators are considered as examples for application of the time-dependent expansion. It is show that the time-dependent strong-coupling expansion is applicable to the time-dependent harmonic oscillators with a slowly varying time-dependent parameter.
文摘This paper shows detailed steps for modeling a quadcopter with Euler-Lagrange equations, followed by controlling it with intelligent control that includes states decoupling. In addition, this control shows non-conventional membership functions for the most instable states, in order to get a fast and effective response.
文摘In this paper, we consider the problem (θ(x,U))_t=(K(x,U)U_x)_x-(K(x,U))_x (x,t)∈G_T (θ(x,U)V(x,t))_t=(DθV_x)_x+(V(KU_x-K))_x,(x,t)∈G_T, u(x,0)=u_0(x),V(x,0),(x,0)=V_0(x),0≤x≤2, U(0,t)=h_0(t),U(2,t)=h_2(t),0≤t≤T, V(0,t)=g_0(t),V(2,t)=g_2(t),0≤t≤T. Where, θ(x,U)=θ_1(x,U) when (x,t)∈D_1={0≤x<1,0≤t≤T};θ(x,U)=θ_2(x,U),(x,t)∈D_2={1<x≤2,0≤t≤T}.K(x,U)=K_i(x,U),(x,t)∈D_i. θ_i, K_i are the Moisture content and hy draulic conductivity of porous Media on D_i respectively. V be the the concentration of solute in the fluid. In addition we also require that U, V, (K(x,U)U_x-1) and DθV_x+V(KU_x-K) are continu ous at x=1. We prove the exisence, uniqueness and large time behavior of the problem by the method of reg ularization.
文摘More new exact solutions for a class of nonlinear coupled differential equations are obtained by using a direct and efficient hyperbola function transform method based on the idea of the extended homogeneous balance method.
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)+2 种基金Basic Research Plan of Shanxi Province(202203021211129)Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)。
文摘In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.
基金Supported by National Natural Science Foundation of China (19801004)
文摘In this paper, the existence of the exponential attractors for the Ginzburg- Landau-BBM equations with periodic initial and boundary conditions are obtained by using the squeezing property and the operator dccomposition method.
基金supported by the National Basic Research Program of China(Grant No.2013CB430403)the Public Science and Technology Research Funds Projects of Ocean(Grant No.201205023)+3 种基金the Program for Liaoning Excellent Talents in University(Grant No.LJQ2013077)the Science and Technology Foundation of Dalian City(Grant No.2013J21DW009)the Special Funds for Postdoctoral Innovative Projects of Liaoning Province(Grant No.2011921018)the Special Funds for Talent Projects of Dalian Ocean University(Grant No.SYYJ2011004)
文摘The purpose of this study is to set up a dynamically linked 1D and 2D hydrodynamic and sediment transport models for dam break flow.The 1D-2D coupling model solves the generalized shallow water equations,the non-equilibrium sediment transport and bed change equations in a coupled fashion using an explicit finite volume method.It considers interactions among transient flow,strong sediment transport and rapid bed change by including bed change and variable flow density in the flow continuity and momentum equations.An unstructured Quadtree rectangular grid with local refinement is used in the 2D model.The intercell flux is computed by the HLL approximate Riemann solver with shock captured capability for computing the dry-to-wet interface for all models.The effects of pressure and gravity are included in source term in this coupling model which can simplify the computation and eliminate numerical imbalance between source and flux terms.The developed model has been tested against experimental and real-life case of dam-break flow over fix bed and movable bed.The results are compared with analytical solution and measured data with good agreement.The simulation results demonstrate that the coupling model is capable of calculating the flow,erosion and deposition for dam break flows in complicated natural domains.