针对实际工程应用中无源滤波系统占用空间受限制的问题,提出了无源滤波器与整流变压器紧凑化设计方法。首先理论分析了解耦机理;其次采用Ansoft对某一容量300 k V·A样机进行建模,结合降阶电感矩阵方法计算出变压器各绕组之间的耦...针对实际工程应用中无源滤波系统占用空间受限制的问题,提出了无源滤波器与整流变压器紧凑化设计方法。首先理论分析了解耦机理;其次采用Ansoft对某一容量300 k V·A样机进行建模,结合降阶电感矩阵方法计算出变压器各绕组之间的耦合系数及紧凑式滤波电抗器电感值;最后,将样机应用于某一实际整流系统中。仿真结果与实验测量对比表明:紧凑式滤波器具有明显的谐波抑制效果。相比传统无源滤波器,紧凑式滤波器占用空间大幅降低,可广泛应用于整流机组空间受限的场合。展开更多
The underbalanced drilling has been widely used due to its advantages of high drilling efficiency and low cost etc., especially for hard formation drilling. These advantages, however, are closely related to the stress...The underbalanced drilling has been widely used due to its advantages of high drilling efficiency and low cost etc., especially for hard formation drilling. These advantages, however, are closely related to the stress state of the bottom-hole rock; therefore, it is significant to research the stress distribution of bottom-hole rock for the correct understanding of the mechanism of rock fragmentation and high penetration rate. The stress condition of bottom-hole rock is very complicated while under the co-action of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature etc. In this paper, the fully coupled simulation model is established and the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on stress distribution of bottom-hole rock are studied. The research shows that: in air drilling, as the well depth increases, the more easily the bottom-hole rock is broken; the mud pressure has a great effect on the bottom hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock; the max principle stress of the bottom-hole increased with the increasing of mud pressure, well depth and temperature difference. The bottom-hole rock can be divided into 3 regions respectively according to the stress state, 3 direction stretch zone, 2 direction compression area and 3 direction compression zone; the corresponding fragmentation degree of difficulty is easily, normally and hardly.展开更多
文摘针对实际工程应用中无源滤波系统占用空间受限制的问题,提出了无源滤波器与整流变压器紧凑化设计方法。首先理论分析了解耦机理;其次采用Ansoft对某一容量300 k V·A样机进行建模,结合降阶电感矩阵方法计算出变压器各绕组之间的耦合系数及紧凑式滤波电抗器电感值;最后,将样机应用于某一实际整流系统中。仿真结果与实验测量对比表明:紧凑式滤波器具有明显的谐波抑制效果。相比传统无源滤波器,紧凑式滤波器占用空间大幅降低,可广泛应用于整流机组空间受限的场合。
基金Projects(U1562212,51525404)supported by the National Natural Science Foundation of ChinaProject(JYBFX-YQ-1)supported by the Research Project of Key Laboratory Machinery and Power Machinery(Xihua University),Ministry of Education,China
文摘The underbalanced drilling has been widely used due to its advantages of high drilling efficiency and low cost etc., especially for hard formation drilling. These advantages, however, are closely related to the stress state of the bottom-hole rock; therefore, it is significant to research the stress distribution of bottom-hole rock for the correct understanding of the mechanism of rock fragmentation and high penetration rate. The stress condition of bottom-hole rock is very complicated while under the co-action of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature etc. In this paper, the fully coupled simulation model is established and the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on stress distribution of bottom-hole rock are studied. The research shows that: in air drilling, as the well depth increases, the more easily the bottom-hole rock is broken; the mud pressure has a great effect on the bottom hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock; the max principle stress of the bottom-hole increased with the increasing of mud pressure, well depth and temperature difference. The bottom-hole rock can be divided into 3 regions respectively according to the stress state, 3 direction stretch zone, 2 direction compression area and 3 direction compression zone; the corresponding fragmentation degree of difficulty is easily, normally and hardly.