Problems in desulfurization of coal by electrochemical reduction is analyzed and calculated. The result shows that 1 ) the △rGm function of the reaction of pyrite into FeS and the modifying reaction decreasing the ox...Problems in desulfurization of coal by electrochemical reduction is analyzed and calculated. The result shows that 1 ) the △rGm function of the reaction of pyrite into FeS and the modifying reaction decreasing the oxygenous functions on coal surface is smaller than zero in a spontaneous reaction, and greater than zero in a non-spontaneous reaction; 2) the △rGm value can be adjusted by pH and the dosage of electrolyte to make it be greaterthan zero , which is favorable for the modifying reaction and useful for desulfurization of coal. The research has provided a theoretical foundation for determining reasonable technical parameters of desulfurization。展开更多
The effects of freeze-thaw cycles on sorption/desorption of dissolved organic carbon (DOC) in two wetland soils and one reclaimed wetland soil were investigated. DOC concentrations added were 0-600 mg/L. Laboratory ...The effects of freeze-thaw cycles on sorption/desorption of dissolved organic carbon (DOC) in two wetland soils and one reclaimed wetland soil were investigated. DOC concentrations added were 0-600 mg/L. Laboratory incubations of sorption/desorption of DOC had been carried out at -15℃ for 10 h, and then at +5℃ for 13 h. Soil samples were refrozen and thawed subsequently for 5 cycles. Initial Mass model was used to describe sorption behavior of DOC. The results indicate that freeze-thaw cycles can significantly increase the sorption capacity of DOC and reduce the desorption capacity of DOC in the three soils. The freeze-thaw effects on desorpfion of DOC in soils increase with the increasing freeze-thaw cycles. The conversion of natural wetlands to soybean farmland can decrease the sorption capacity and increase the desorption capacity of DOC in soils. Global warming and reclamation may increase DOC release, and subsequently increase the loss of carbon and the emission of greenhouse gas.展开更多
The acidic properties of aluminum phosphate (A1PO4-5) solid acid catalyst were characterized by tem- perature programmed desorption (TPD) of ammonia (NH3), n-propylamine (n-C3HTNH2), iso-propylamine [(CH3)2C...The acidic properties of aluminum phosphate (A1PO4-5) solid acid catalyst were characterized by tem- perature programmed desorption (TPD) of ammonia (NH3), n-propylamine (n-C3HTNH2), iso-propylamine [(CH3)2CHNH2] and n-dipropylamine [(C3H7)2NH] separately, and its catalytic performance in benzene alkylation with long chain olefin was studied in a fixed-bed reactor. The characterized acid amount of catalyst increased with the basicity of adsorbates. With increase of the activation temperature of catalyst, the acid amount characterized by NHa-TPD decreased, however, it increased when characterized by TPD using three other adsorbates. The desorption kinetics of TPD process and the deactivation kinetics of catalyst were investigated. The acidity and catalytic per- formance of catalyst was also correlated. The results showed that the acid amount and strength are well correlated with the activity and stability using NH3 as adsorbate, respectively, which indicated NH3 was a better basic adsorbate. It was also found that the catalyst with higher acid amount and lower acid strength on the surface exhibited the better catalytic performance and stability.展开更多
Carbonate decomposition of carbonic refractory gold ore and the following pressure oxidation were studied.In the carbonate decomposition procedure,the effects of liquid-to-solid ratio and reaction time on decompositio...Carbonate decomposition of carbonic refractory gold ore and the following pressure oxidation were studied.In the carbonate decomposition procedure,the effects of liquid-to-solid ratio and reaction time on decomposition ratio of carbonate were investigated.The experimental result shows that the decomposition ratio of carbonate is 98.24%under the conditions of liquid-to-solid ratio of 5:1,Fe^(3+)concentration of 20 g/L,sulfuric acid concentration of 20 g/L,reaction temperature of 80 ℃ and reaction time of 2 h.Then,the slurry obtained from carbonate decomposition was put into the titanium autoclave for pressure oxidation leaching.Effects of liquid-to-solid ratio,temperature,time and oxygen partial pressure on sulfur oxidation ratio were studied during pressure oxidation.With the prolonged time,pyrite and arsenopyrite are oxidized to ferric subsulfate,hydrated ferric sulfate and jarosite,resulting in the increasing residue ratio.The residue ratio and the sulfur content in the residue can be decreased by ferric subsulfate dissolution.The oxidation ratio of the sulfur is 99.35% under the conditions of oxidation time of 4 h,temperature of 210 ℃,oxygen partial pressure of 0.8 MPa and stirring speed of 600 r/min.展开更多
基金National Natural Science Foundation of China(50174054)
文摘Problems in desulfurization of coal by electrochemical reduction is analyzed and calculated. The result shows that 1 ) the △rGm function of the reaction of pyrite into FeS and the modifying reaction decreasing the oxygenous functions on coal surface is smaller than zero in a spontaneous reaction, and greater than zero in a non-spontaneous reaction; 2) the △rGm value can be adjusted by pH and the dosage of electrolyte to make it be greaterthan zero , which is favorable for the modifying reaction and useful for desulfurization of coal. The research has provided a theoretical foundation for determining reasonable technical parameters of desulfurization。
基金Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-309)National Natural Science Foundation of China (No. 40871089, 40830535)
文摘The effects of freeze-thaw cycles on sorption/desorption of dissolved organic carbon (DOC) in two wetland soils and one reclaimed wetland soil were investigated. DOC concentrations added were 0-600 mg/L. Laboratory incubations of sorption/desorption of DOC had been carried out at -15℃ for 10 h, and then at +5℃ for 13 h. Soil samples were refrozen and thawed subsequently for 5 cycles. Initial Mass model was used to describe sorption behavior of DOC. The results indicate that freeze-thaw cycles can significantly increase the sorption capacity of DOC and reduce the desorption capacity of DOC in the three soils. The freeze-thaw effects on desorpfion of DOC in soils increase with the increasing freeze-thaw cycles. The conversion of natural wetlands to soybean farmland can decrease the sorption capacity and increase the desorption capacity of DOC in soils. Global warming and reclamation may increase DOC release, and subsequently increase the loss of carbon and the emission of greenhouse gas.
文摘The acidic properties of aluminum phosphate (A1PO4-5) solid acid catalyst were characterized by tem- perature programmed desorption (TPD) of ammonia (NH3), n-propylamine (n-C3HTNH2), iso-propylamine [(CH3)2CHNH2] and n-dipropylamine [(C3H7)2NH] separately, and its catalytic performance in benzene alkylation with long chain olefin was studied in a fixed-bed reactor. The characterized acid amount of catalyst increased with the basicity of adsorbates. With increase of the activation temperature of catalyst, the acid amount characterized by NHa-TPD decreased, however, it increased when characterized by TPD using three other adsorbates. The desorption kinetics of TPD process and the deactivation kinetics of catalyst were investigated. The acidity and catalytic per- formance of catalyst was also correlated. The results showed that the acid amount and strength are well correlated with the activity and stability using NH3 as adsorbate, respectively, which indicated NH3 was a better basic adsorbate. It was also found that the catalyst with higher acid amount and lower acid strength on the surface exhibited the better catalytic performance and stability.
基金Project(51404296)supported by the Young Scientists Fund of National Natural Science Foundation of ChinaProject(134414)supported by the Postdoctoral Funded Program of Central South University,China
文摘Carbonate decomposition of carbonic refractory gold ore and the following pressure oxidation were studied.In the carbonate decomposition procedure,the effects of liquid-to-solid ratio and reaction time on decomposition ratio of carbonate were investigated.The experimental result shows that the decomposition ratio of carbonate is 98.24%under the conditions of liquid-to-solid ratio of 5:1,Fe^(3+)concentration of 20 g/L,sulfuric acid concentration of 20 g/L,reaction temperature of 80 ℃ and reaction time of 2 h.Then,the slurry obtained from carbonate decomposition was put into the titanium autoclave for pressure oxidation leaching.Effects of liquid-to-solid ratio,temperature,time and oxygen partial pressure on sulfur oxidation ratio were studied during pressure oxidation.With the prolonged time,pyrite and arsenopyrite are oxidized to ferric subsulfate,hydrated ferric sulfate and jarosite,resulting in the increasing residue ratio.The residue ratio and the sulfur content in the residue can be decreased by ferric subsulfate dissolution.The oxidation ratio of the sulfur is 99.35% under the conditions of oxidation time of 4 h,temperature of 210 ℃,oxygen partial pressure of 0.8 MPa and stirring speed of 600 r/min.