The influence of crown ether on behaviors of arsenic at different temperatures and residence time was investigated during the pyrolysis of Tuanbo (TB) coal. The modes of occurrence of arsenic were determined by sequ...The influence of crown ether on behaviors of arsenic at different temperatures and residence time was investigated during the pyrolysis of Tuanbo (TB) coal. The modes of occurrence of arsenic were determined by sequential chemical extraction, density fractionation and demineralization. The results indicated that at the same temperature and residence time, the arsenic removal adding dibenzo-18-crown-6 was higher than that adding 18-crown-6, and were all higher than that of TB coal during pyrolysis. When temperature was 850 ℃ and residence time was 30 min, the arsenic removal of TB coal was 30.63%; at the same condition, the arsenic removal while adding 18-crown-6 was 33.21%, higher than that of TB coal; and the arsenic removal while adding dibenzo-18-crown-6 was 67.41%, significantly higher than that of TB coal. From the results, we can see that adding crown ether can improve the arsenic removal during coal pyrolysis, and especially be conducive to the arsenic which is mainly associated with sulfates & monosulfides and that in stable forms.展开更多
Carbonate decomposition of carbonic refractory gold ore and the following pressure oxidation were studied.In the carbonate decomposition procedure,the effects of liquid-to-solid ratio and reaction time on decompositio...Carbonate decomposition of carbonic refractory gold ore and the following pressure oxidation were studied.In the carbonate decomposition procedure,the effects of liquid-to-solid ratio and reaction time on decomposition ratio of carbonate were investigated.The experimental result shows that the decomposition ratio of carbonate is 98.24%under the conditions of liquid-to-solid ratio of 5:1,Fe^(3+)concentration of 20 g/L,sulfuric acid concentration of 20 g/L,reaction temperature of 80 ℃ and reaction time of 2 h.Then,the slurry obtained from carbonate decomposition was put into the titanium autoclave for pressure oxidation leaching.Effects of liquid-to-solid ratio,temperature,time and oxygen partial pressure on sulfur oxidation ratio were studied during pressure oxidation.With the prolonged time,pyrite and arsenopyrite are oxidized to ferric subsulfate,hydrated ferric sulfate and jarosite,resulting in the increasing residue ratio.The residue ratio and the sulfur content in the residue can be decreased by ferric subsulfate dissolution.The oxidation ratio of the sulfur is 99.35% under the conditions of oxidation time of 4 h,temperature of 210 ℃,oxygen partial pressure of 0.8 MPa and stirring speed of 600 r/min.展开更多
基金Supported by the Research Fund for the Doctoral Program of Higher Education of China for New Teachers (20091404120002) the Shanxi Provincial Science Foundation for Youths of China (2011021008-1)
文摘The influence of crown ether on behaviors of arsenic at different temperatures and residence time was investigated during the pyrolysis of Tuanbo (TB) coal. The modes of occurrence of arsenic were determined by sequential chemical extraction, density fractionation and demineralization. The results indicated that at the same temperature and residence time, the arsenic removal adding dibenzo-18-crown-6 was higher than that adding 18-crown-6, and were all higher than that of TB coal during pyrolysis. When temperature was 850 ℃ and residence time was 30 min, the arsenic removal of TB coal was 30.63%; at the same condition, the arsenic removal while adding 18-crown-6 was 33.21%, higher than that of TB coal; and the arsenic removal while adding dibenzo-18-crown-6 was 67.41%, significantly higher than that of TB coal. From the results, we can see that adding crown ether can improve the arsenic removal during coal pyrolysis, and especially be conducive to the arsenic which is mainly associated with sulfates & monosulfides and that in stable forms.
基金Project(51404296)supported by the Young Scientists Fund of National Natural Science Foundation of ChinaProject(134414)supported by the Postdoctoral Funded Program of Central South University,China
文摘Carbonate decomposition of carbonic refractory gold ore and the following pressure oxidation were studied.In the carbonate decomposition procedure,the effects of liquid-to-solid ratio and reaction time on decomposition ratio of carbonate were investigated.The experimental result shows that the decomposition ratio of carbonate is 98.24%under the conditions of liquid-to-solid ratio of 5:1,Fe^(3+)concentration of 20 g/L,sulfuric acid concentration of 20 g/L,reaction temperature of 80 ℃ and reaction time of 2 h.Then,the slurry obtained from carbonate decomposition was put into the titanium autoclave for pressure oxidation leaching.Effects of liquid-to-solid ratio,temperature,time and oxygen partial pressure on sulfur oxidation ratio were studied during pressure oxidation.With the prolonged time,pyrite and arsenopyrite are oxidized to ferric subsulfate,hydrated ferric sulfate and jarosite,resulting in the increasing residue ratio.The residue ratio and the sulfur content in the residue can be decreased by ferric subsulfate dissolution.The oxidation ratio of the sulfur is 99.35% under the conditions of oxidation time of 4 h,temperature of 210 ℃,oxygen partial pressure of 0.8 MPa and stirring speed of 600 r/min.