Coherence analysis is a powerful tool in seismic interpretation for imaging geological discontinuities such as faults and fractures. However, subtle faults or fractures of one stratum are difficult to be distinguished...Coherence analysis is a powerful tool in seismic interpretation for imaging geological discontinuities such as faults and fractures. However, subtle faults or fractures of one stratum are difficult to be distinguished on coherence sections (time slices or profiles) due to interferences from adjacent strata, especially these with strong reflectivity. In this paper, we propose a coherence enhancement method which applies local histogram specification (LHS) techniques to enhance subtle faults or fractures in the coherence cubes. Unlike the traditional histogram specification (HS) algorithm, our method processes 3D coherence data without discretization. This method partitions a coherence cube into many sub-blocks and self-adaptively specifies the target distribution in each block based on the whole distribution of the coherence cube. Furthermore, the neighboring blocks are partially overlapped to reduce the edge effect. Applications to real datasets show that the new method enhances the details of subtle faults and fractures noticeably.展开更多
基金sponsored by Important National Science and Technology Specific Projects of China (Grant No.2008ZX05023-005-011 and No. 2008ZX05040-003)the National 973 Program of China (Grant No. 2006CB202208)
文摘Coherence analysis is a powerful tool in seismic interpretation for imaging geological discontinuities such as faults and fractures. However, subtle faults or fractures of one stratum are difficult to be distinguished on coherence sections (time slices or profiles) due to interferences from adjacent strata, especially these with strong reflectivity. In this paper, we propose a coherence enhancement method which applies local histogram specification (LHS) techniques to enhance subtle faults or fractures in the coherence cubes. Unlike the traditional histogram specification (HS) algorithm, our method processes 3D coherence data without discretization. This method partitions a coherence cube into many sub-blocks and self-adaptively specifies the target distribution in each block based on the whole distribution of the coherence cube. Furthermore, the neighboring blocks are partially overlapped to reduce the edge effect. Applications to real datasets show that the new method enhances the details of subtle faults and fractures noticeably.