Copper is difficult to separate from nickel electrolyte due to low concentration of copper (0.53 g/L) with high concentration of nickel (75 g/L). Manganese sulfide (MnS) was used to deeply remove copper from the elect...Copper is difficult to separate from nickel electrolyte due to low concentration of copper (0.53 g/L) with high concentration of nickel (75 g/L). Manganese sulfide (MnS) was used to deeply remove copper from the electrolyte. Experimental results show that the concentration of copper (ρ(Cu)) decreases from 530 to 3 mg/L and the mass ratio of copper to nickel (RCu/Ni) in the residue reaches above 15 when the MnS dosage is 1.4 times the theoretical valueDt,MnS (Dt,MnS=0.74 g) and the pH value of electrolyte is 4?5 with reaction time more than 60 min at temperatures above 60 °C. The concentration of newly generated Mn2+(ρ(Mn)) in the solution is also reduced to 3 mg/L by the oxidation reaction. The values ofρ(Cu),ρ(Mn)andRCu/Ni meet the requirements of copper removal from the electrolyte. It is shown that MnS can be considered a highly effective decoppering reagent.展开更多
Removal of Sb(V) from copper electrolyte by different sorbents such as activated carbon, bentonite, kaolin, resin, zeolite and white sand was investigated. Adsorption capacity of Sb(V) removal from copper electrol...Removal of Sb(V) from copper electrolyte by different sorbents such as activated carbon, bentonite, kaolin, resin, zeolite and white sand was investigated. Adsorption capacity of Sb(V) removal from copper electrolyte was as follows: white sand 〈 anionic resin 〈 zeolite 〈 kaolin 〈 activated carbon 〈 bentonite. Bentonite was characterized using FTIR, XRF, XRD, SEM and BET methods. The results show specific surface area of 95 m2/g and particles size of 175 nm for bentonite. The optimum conditions for the maximum removal of Sb are contact time 10 min, 4 g bentonite and temperature of 40 ° C. The adsorption of Sb(V) on bentonite is followed by pseudo-second-order kinetic (R2=0.996 and k=9×10?5 g/(mg· min)). Thermodynamic results reveal that the adsorption of Sb(V) onto bentonite from copper electrolyte is endothermic and spontaneous process (ΔGΘ=?4806 kJ/(mol· K). The adsorption data fit both the Freundlich and Langmuir isotherm models. Bentonite has the maximum adsorption capacity of 10000 mg/g for adsorption of Sb(V) in copper electrolyte. The adsorption of Zn, Co, Cu and Bi that present in the copper electrolyte is very low and insignificant.展开更多
A bacterial strain,designated as LS,was isolated from a contaminated soil and was found to be capable of utilizing quinclorac,bensulfuronmethyl,and a mixture of the two as carbon and energy sources for growth. Strain ...A bacterial strain,designated as LS,was isolated from a contaminated soil and was found to be capable of utilizing quinclorac,bensulfuronmethyl,and a mixture of the two as carbon and energy sources for growth. Strain LS was identified as Ochrobactrum sp. based on its physiological-biochemical properties,16S rDNA sequences,and phylogenetic analysis. The extent of degradation of quinclorac and bensulfuronmethyl at initial concentrations of 1.5 and 0.1 g L-1 was 90% and 67%,respectively,as measured by high performance liquid chromatography(HPLC) . When a herbicide mixture of 0.34 g L-1 quinclorac and 0.02 g L-1 bensulfuronmethyl was applied as carbon sources,quinclorac and bensulfuronmethyl were degraded at 95.7% and 67.5%,respectively. It appears that quinclorac is utilized more easily in a mixture than in a single state. The optimal temperature for growth of strain LS was 37 ℃. Strain LS grew well at pH 6 to 9 and had the highest degradation level for quinclorac and bensulfuronmethyl at an initial pH of 7 and 8,respectively. Addition of 0.25 g L-1 yeast extract could promote the growth and extent of degradation of quinclorac and bensulfuronmethyl by strain LS. Strain LS also showed the capability to degrade other aromatic compounds such as catechol,propisochlor,4-chloro-2-methylphenoxyacetic acid sodium(MCPA-Na) and imazethapy. The isolate LS shows a huge potential to be used in bioremediation for treating complex herbicide residues.展开更多
The pretreatment of refractory polyvinyl-alcohol (PVA) wastewater with low value of CODcr by Fenton's reagent was investigated to enhance the biodegradabilily. The effects of operating conditions such as pH of the ...The pretreatment of refractory polyvinyl-alcohol (PVA) wastewater with low value of CODcr by Fenton's reagent was investigated to enhance the biodegradabilily. The effects of operating conditions such as pH of the solution, Fe2+ dosage, H2O2 dosage, reaction time and initial PVA concentration on the removal efficiency of CODCr were discussed. It is demonstrated that the optimum value of pH for removal of CODcr is 5 and the most suitable dosages of H2O2 (2%) and FeSO4 (10 mg/L) are 5% and 8.0%, respectively. When the initial CODcr value of the PVA water is 760 mg/L, the favorable reaction time is 110 min. Under these optimum conditions, the removal ratio of CODcr is 58.6% 61.4%, and the value of biodegradability (CODB/CODcr) increases markedly from 8.9% 9.7% to 62.6% 68.3%.展开更多
Methiopyrsulfuron is a new low-rate sulfonylurea herbicide for weed control in wheat; however, there is a lack of published information on its behavior in soils. In this study, methiopyrsulfuron adsorption and desorpt...Methiopyrsulfuron is a new low-rate sulfonylurea herbicide for weed control in wheat; however, there is a lack of published information on its behavior in soils. In this study, methiopyrsulfuron adsorption and desorption were measured in seven soils sampled from Heilongjiang, Shandong, Jiangxi, Sichuan, Anhui, and Chongqing provinces of China using a batch equilibrium method. The Freundlich equation was used to described its adsorption and desorption. Adsorption isotherms were nonlinear with the values of Kf-ads, the Freundlich empirical constant indicative of the adsorption capacity, ranging from 0.75 to 2.46, suggesting that little of this herbicide was adsorbed by any of the seven soils. Soil pH and organic matter content (OM) were the main factors influencing adsorption; adsorption was negatively correlated with pH and positively correlated with OM. Methiopyrsulfuron desorption was hysteretic on the soils with high OM content and low pH.展开更多
基金Project(51104183)supported by the National Natural Science Foundation of ChinaProject supported by the China Scholarship Council
文摘Copper is difficult to separate from nickel electrolyte due to low concentration of copper (0.53 g/L) with high concentration of nickel (75 g/L). Manganese sulfide (MnS) was used to deeply remove copper from the electrolyte. Experimental results show that the concentration of copper (ρ(Cu)) decreases from 530 to 3 mg/L and the mass ratio of copper to nickel (RCu/Ni) in the residue reaches above 15 when the MnS dosage is 1.4 times the theoretical valueDt,MnS (Dt,MnS=0.74 g) and the pH value of electrolyte is 4?5 with reaction time more than 60 min at temperatures above 60 °C. The concentration of newly generated Mn2+(ρ(Mn)) in the solution is also reduced to 3 mg/L by the oxidation reaction. The values ofρ(Cu),ρ(Mn)andRCu/Ni meet the requirements of copper removal from the electrolyte. It is shown that MnS can be considered a highly effective decoppering reagent.
基金Kerman-Sarcheshmeh copper electrorefining(Iran)and Islamic Azad University,Yazd Brunch for support to carry out this work
文摘Removal of Sb(V) from copper electrolyte by different sorbents such as activated carbon, bentonite, kaolin, resin, zeolite and white sand was investigated. Adsorption capacity of Sb(V) removal from copper electrolyte was as follows: white sand 〈 anionic resin 〈 zeolite 〈 kaolin 〈 activated carbon 〈 bentonite. Bentonite was characterized using FTIR, XRF, XRD, SEM and BET methods. The results show specific surface area of 95 m2/g and particles size of 175 nm for bentonite. The optimum conditions for the maximum removal of Sb are contact time 10 min, 4 g bentonite and temperature of 40 ° C. The adsorption of Sb(V) on bentonite is followed by pseudo-second-order kinetic (R2=0.996 and k=9×10?5 g/(mg· min)). Thermodynamic results reveal that the adsorption of Sb(V) onto bentonite from copper electrolyte is endothermic and spontaneous process (ΔGΘ=?4806 kJ/(mol· K). The adsorption data fit both the Freundlich and Langmuir isotherm models. Bentonite has the maximum adsorption capacity of 10000 mg/g for adsorption of Sb(V) in copper electrolyte. The adsorption of Zn, Co, Cu and Bi that present in the copper electrolyte is very low and insignificant.
基金the National Natural Science Foundation of China (Nos.40501037 and 30570053)the National Key Technologies Research and Development Program of China during the 11th Five-Year Plan Period(No.2006BAJ08B01).
文摘A bacterial strain,designated as LS,was isolated from a contaminated soil and was found to be capable of utilizing quinclorac,bensulfuronmethyl,and a mixture of the two as carbon and energy sources for growth. Strain LS was identified as Ochrobactrum sp. based on its physiological-biochemical properties,16S rDNA sequences,and phylogenetic analysis. The extent of degradation of quinclorac and bensulfuronmethyl at initial concentrations of 1.5 and 0.1 g L-1 was 90% and 67%,respectively,as measured by high performance liquid chromatography(HPLC) . When a herbicide mixture of 0.34 g L-1 quinclorac and 0.02 g L-1 bensulfuronmethyl was applied as carbon sources,quinclorac and bensulfuronmethyl were degraded at 95.7% and 67.5%,respectively. It appears that quinclorac is utilized more easily in a mixture than in a single state. The optimal temperature for growth of strain LS was 37 ℃. Strain LS grew well at pH 6 to 9 and had the highest degradation level for quinclorac and bensulfuronmethyl at an initial pH of 7 and 8,respectively. Addition of 0.25 g L-1 yeast extract could promote the growth and extent of degradation of quinclorac and bensulfuronmethyl by strain LS. Strain LS also showed the capability to degrade other aromatic compounds such as catechol,propisochlor,4-chloro-2-methylphenoxyacetic acid sodium(MCPA-Na) and imazethapy. The isolate LS shows a huge potential to be used in bioremediation for treating complex herbicide residues.
基金Project(08JCYBJC02600) supported by the Natural Science Foundation of Tianjin,ChinaProject(2008ZX07314-005-011) supported by the National Major Technological Program of China
文摘The pretreatment of refractory polyvinyl-alcohol (PVA) wastewater with low value of CODcr by Fenton's reagent was investigated to enhance the biodegradabilily. The effects of operating conditions such as pH of the solution, Fe2+ dosage, H2O2 dosage, reaction time and initial PVA concentration on the removal efficiency of CODCr were discussed. It is demonstrated that the optimum value of pH for removal of CODcr is 5 and the most suitable dosages of H2O2 (2%) and FeSO4 (10 mg/L) are 5% and 8.0%, respectively. When the initial CODcr value of the PVA water is 760 mg/L, the favorable reaction time is 110 min. Under these optimum conditions, the removal ratio of CODcr is 58.6% 61.4%, and the value of biodegradability (CODB/CODcr) increases markedly from 8.9% 9.7% to 62.6% 68.3%.
基金Supported by the Chongqing Natural Science Foundation, China (No.CSTC 2009BA1042)the Program for New Century Excellent Talents in University of Ministry of Education,China (No.NCET-04-0854)
文摘Methiopyrsulfuron is a new low-rate sulfonylurea herbicide for weed control in wheat; however, there is a lack of published information on its behavior in soils. In this study, methiopyrsulfuron adsorption and desorption were measured in seven soils sampled from Heilongjiang, Shandong, Jiangxi, Sichuan, Anhui, and Chongqing provinces of China using a batch equilibrium method. The Freundlich equation was used to described its adsorption and desorption. Adsorption isotherms were nonlinear with the values of Kf-ads, the Freundlich empirical constant indicative of the adsorption capacity, ranging from 0.75 to 2.46, suggesting that little of this herbicide was adsorbed by any of the seven soils. Soil pH and organic matter content (OM) were the main factors influencing adsorption; adsorption was negatively correlated with pH and positively correlated with OM. Methiopyrsulfuron desorption was hysteretic on the soils with high OM content and low pH.