The nonlinear predator-prey singularly perturbed Robin initial boundary value problems for reaction diffusion systems were considered. Under suitable conditions, using theory of differential inequalities the existence...The nonlinear predator-prey singularly perturbed Robin initial boundary value problems for reaction diffusion systems were considered. Under suitable conditions, using theory of differential inequalities the existence and asymptotic behavior of solution for initial boundary value problems were studied.展开更多
The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. A...The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. Apart from block iterative methods, the formulation of the MSOR (Modified Successive Over-Relaxation) method known as SOR method with red-black ordering strategy by using two accelerated parameters, ω and ω′, has also improved the convergence rate of the standard SOR method. Due to the effectiveness of these iterative methods, the primary goal of this paper is to examine the performance of the EG family without or with accelerated parameters in solving second order two-point nonlinear boundary value problems. In this work, the second order two-point nonlinear boundary value problems need to be discretized by using the second order central difference scheme in constructing a nonlinear finite difference approximation equation. Then this approximation equation leads to a nonlinear system. As well known that to linearize nonlinear systems, the Newton method has been proposed to transform the original system into the form of linear system. In addition to that, the basic formulation and implementation of 2 and 4-point EG iterative methods based on GS (Gauss-Seidel), SOR and MSOR approaches, namely EGGS, EGSOR and EGMSOR respectively are also presented. Then, combinations between the EG family and Newton scheme are indicated as EGGS-Newton, EGSOR-Newton and EGMSOR-Newton methods respectively. For comparison purpose, several numerical experiments of three problems are conducted in examining the effectiveness of tested methods. Finally, it can be concluded that the 4-point EGMSOR-Newton method is more superior in accelerating the convergence rate compared with the tested methods.展开更多
By using cone expansion-compression theorem in this paper, we study boundary value problems for a coupled system of nonlinear third-order differential equation. Some sufficient conditions are obtained which guarantee ...By using cone expansion-compression theorem in this paper, we study boundary value problems for a coupled system of nonlinear third-order differential equation. Some sufficient conditions are obtained which guarantee the boundary value problems for a coupled system of nonlinear third-order differential equation has at least one positive solution. Some examples are given to verify our results.展开更多
Thermal runaway has been a long-standing safety issue impeding the development of high-energy- density batteries. Physical safety designs such as employing circuit-breakers and fuses to batteries are limited by small ...Thermal runaway has been a long-standing safety issue impeding the development of high-energy- density batteries. Physical safety designs such as employing circuit-breakers and fuses to batteries are limited by small operating voltage windows and no resumption of original working condition when it is cooled down. Here we report a smart thermoresponsive polymer electrolyte that can be incorporated inside batteries to prevent thermal runaway via a fast and reversible sol-gel transition, and successfully combine this smart electrolyte with a rechargeable Zn/^-Mn02 battery system. At high temperature, bat- tery operation is inhibited as a result of the increased internal resistance caused by the gelation of liquid electrolyte. After cooling down, the electrolyte is spontaneously reversed to sol state and the electro- chemical performance of the battery is restored. More importantly, sol-gel transition enables the smart battery to experience different charge-discharge rates under various temperature levels, providing a smart and active strategy to achieve dynamic and reversible self-protection.展开更多
A soliton hierarchy of multicomponent AKNS equations is generated from an arbitraryorder matrix spectral problem, along with its bi-Hamiltonian formulation. Adjoint symmetry constraints are presented to manipulate bi...A soliton hierarchy of multicomponent AKNS equations is generated from an arbitraryorder matrix spectral problem, along with its bi-Hamiltonian formulation. Adjoint symmetry constraints are presented to manipulate binary nonlinearization for the associated arbitrary order matrix spectral problem. The resulting spatial and temporal constrained flows are shown to provide integrable decompositions of the multicomponent AKNS equations.展开更多
This paper is focused on the H_(∞) control problem for linear systems with interval timevarying delays.By employing a reciprocally convex combination approach and a delay decomposition approach,some new delay-depende...This paper is focused on the H_(∞) control problem for linear systems with interval timevarying delays.By employing a reciprocally convex combination approach and a delay decomposition approach,some new delay-dependent bounded real lemmas(BRLs) are derived such that the closedloop system is asymptotically stable with a prescribed H_(∞) level.The BRLs are then used to solve the H_(∞) controller design by incorporating with the cone complementary approach.Three numerical examples are finally given to show the validity of the proposed method.展开更多
This paper presents sensitivity analysis for parameterized variational inequality problems (VIP). Under appropriate assumption, it is shown that the perturbed solution to parameterized VIP is existent, unique, continu...This paper presents sensitivity analysis for parameterized variational inequality problems (VIP). Under appropriate assumption, it is shown that the perturbed solution to parameterized VIP is existent, unique, continuous and differentiable with respect to perturbation parameter. In the case of differentiability, we derive the equations for calculating the derivative of solution variables with respect to the perturbation parameters.展开更多
This paper is concerned with the global existence and the partial regularity for the weak solution of the Landau-Lifshitz-Maxell system in two dimensions with Neumann boundary conditions.
Calculation of eigen-solutions plays an important role in the small signal stability analysis of power systems.In this paper,a novel approach based on matrix perturbation theory is proposed for the calculation of eige...Calculation of eigen-solutions plays an important role in the small signal stability analysis of power systems.In this paper,a novel approach based on matrix perturbation theory is proposed for the calculation of eigen-solutions in a perturbed system.Rigorous theoretical analysis is conducted on the solution of distinct,multiple,and close eigen-solutions,respectively,under perturbations of parameters.The computational flowchart of the unified solution of eigen-solutions is then proposed,aimed toward obtaining eigen-solutions of a perturbed system directly with algebraic formulas without solving an eigenvalue problem repeatedly.Finally,the effectiveness of the matrix perturbation based approach for eigen-solutions’calculation in power systems is verified by numerical examples on a two-area four-machine system.展开更多
基金Important Study Project of the NationalNatural Science F oundation of China( No.90 2 110 0 4),and"Hun-dred Talents Project"of Chinese Academy of Sciences
文摘The nonlinear predator-prey singularly perturbed Robin initial boundary value problems for reaction diffusion systems were considered. Under suitable conditions, using theory of differential inequalities the existence and asymptotic behavior of solution for initial boundary value problems were studied.
文摘The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. Apart from block iterative methods, the formulation of the MSOR (Modified Successive Over-Relaxation) method known as SOR method with red-black ordering strategy by using two accelerated parameters, ω and ω′, has also improved the convergence rate of the standard SOR method. Due to the effectiveness of these iterative methods, the primary goal of this paper is to examine the performance of the EG family without or with accelerated parameters in solving second order two-point nonlinear boundary value problems. In this work, the second order two-point nonlinear boundary value problems need to be discretized by using the second order central difference scheme in constructing a nonlinear finite difference approximation equation. Then this approximation equation leads to a nonlinear system. As well known that to linearize nonlinear systems, the Newton method has been proposed to transform the original system into the form of linear system. In addition to that, the basic formulation and implementation of 2 and 4-point EG iterative methods based on GS (Gauss-Seidel), SOR and MSOR approaches, namely EGGS, EGSOR and EGMSOR respectively are also presented. Then, combinations between the EG family and Newton scheme are indicated as EGGS-Newton, EGSOR-Newton and EGMSOR-Newton methods respectively. For comparison purpose, several numerical experiments of three problems are conducted in examining the effectiveness of tested methods. Finally, it can be concluded that the 4-point EGMSOR-Newton method is more superior in accelerating the convergence rate compared with the tested methods.
基金Foundation item: Supported by the National Natural Science Foundation of China(10801001) Supported by the Natural Science Foundation of Anhui Province(1208085MA13)
文摘By using cone expansion-compression theorem in this paper, we study boundary value problems for a coupled system of nonlinear third-order differential equation. Some sufficient conditions are obtained which guarantee the boundary value problems for a coupled system of nonlinear third-order differential equation has at least one positive solution. Some examples are given to verify our results.
基金supported by NSFC/RGC Joint Research Scheme under Project N_CityU123/15 and NSFC 5151101197a Grant from City University of Hong Kong (PJ7004645)sponsored by Science & Technology Department of Sichuan Province (2017JY0088)
文摘Thermal runaway has been a long-standing safety issue impeding the development of high-energy- density batteries. Physical safety designs such as employing circuit-breakers and fuses to batteries are limited by small operating voltage windows and no resumption of original working condition when it is cooled down. Here we report a smart thermoresponsive polymer electrolyte that can be incorporated inside batteries to prevent thermal runaway via a fast and reversible sol-gel transition, and successfully combine this smart electrolyte with a rechargeable Zn/^-Mn02 battery system. At high temperature, bat- tery operation is inhibited as a result of the increased internal resistance caused by the gelation of liquid electrolyte. After cooling down, the electrolyte is spontaneously reversed to sol state and the electro- chemical performance of the battery is restored. More importantly, sol-gel transition enables the smart battery to experience different charge-discharge rates under various temperature levels, providing a smart and active strategy to achieve dynamic and reversible self-protection.
基金Research Grants Council of Hong Kong(CERG 9040466)City University of Hong Kong(SRGs 7001041,7001178)+2 种基金National Science Foundation of China(No.19801031)Special Grant of Excellent PhD Thesis(No.200013)Special Funds for Major State Basjc Reaca
文摘A soliton hierarchy of multicomponent AKNS equations is generated from an arbitraryorder matrix spectral problem, along with its bi-Hamiltonian formulation. Adjoint symmetry constraints are presented to manipulate binary nonlinearization for the associated arbitrary order matrix spectral problem. The resulting spatial and temporal constrained flows are shown to provide integrable decompositions of the multicomponent AKNS equations.
基金supported by the National Nature Science Foundation of China under Grant No.61203136the Natural Science Foundation of Hunan Province of China Grant Nos.2015JJ5021 and 2015JJ3064the Construct Program of the Key Discipline in Hunan Province
文摘This paper is focused on the H_(∞) control problem for linear systems with interval timevarying delays.By employing a reciprocally convex combination approach and a delay decomposition approach,some new delay-dependent bounded real lemmas(BRLs) are derived such that the closedloop system is asymptotically stable with a prescribed H_(∞) level.The BRLs are then used to solve the H_(∞) controller design by incorporating with the cone complementary approach.Three numerical examples are finally given to show the validity of the proposed method.
基金This research is partially supported by Key Laboratory of Management, Decision and Information Systems,CAS and National Science Foundations of China.
文摘This paper presents sensitivity analysis for parameterized variational inequality problems (VIP). Under appropriate assumption, it is shown that the perturbed solution to parameterized VIP is existent, unique, continuous and differentiable with respect to perturbation parameter. In the case of differentiability, we derive the equations for calculating the derivative of solution variables with respect to the perturbation parameters.
文摘This paper is concerned with the global existence and the partial regularity for the weak solution of the Landau-Lifshitz-Maxell system in two dimensions with Neumann boundary conditions.
基金supported in part by the National Science Foundation of United States(NSF)(Grant No.0844707)in part by the International S&T Cooperation Program of China(ISTCP)(Grant No.2013DFA60930)
文摘Calculation of eigen-solutions plays an important role in the small signal stability analysis of power systems.In this paper,a novel approach based on matrix perturbation theory is proposed for the calculation of eigen-solutions in a perturbed system.Rigorous theoretical analysis is conducted on the solution of distinct,multiple,and close eigen-solutions,respectively,under perturbations of parameters.The computational flowchart of the unified solution of eigen-solutions is then proposed,aimed toward obtaining eigen-solutions of a perturbed system directly with algebraic formulas without solving an eigenvalue problem repeatedly.Finally,the effectiveness of the matrix perturbation based approach for eigen-solutions’calculation in power systems is verified by numerical examples on a two-area four-machine system.