Low-head hydraulic turbines are the subjects to individual approach of design. This comes from the fact that hydrological conditions are not of a standard character. Therefore, the design method of the hydraulic turbi...Low-head hydraulic turbines are the subjects to individual approach of design. This comes from the fact that hydrological conditions are not of a standard character. Therefore, the design method of the hydraulic turbine stage has a great importance for those who may be interested in such an investment. As a first task in a design procedure the guide vane is considered. The proposed method is based on the solution of the inverse problem within the flame of 2D model. By the inverse problem authors mean a design of the blade shapes for given flow conditions. In the paper analytical solution for the simple cylindrical shape of a guide vane is presented. For the more realistic cases numerical solutions according to the axis-symmetrical model of the flow are also presented. The influence of such parameters as the inclination of trailing edge, the blockage factor due to blade thickness, the influence of loss due to dissipation are shown for the chosen simple geometrical example.展开更多
Axiomatic design (AD) and theory of inventive problem solving (TRIZ) are widely used in conceptual design. Both of them have limitations, however. We presented an integrated model of these two methods to increase the ...Axiomatic design (AD) and theory of inventive problem solving (TRIZ) are widely used in conceptual design. Both of them have limitations, however. We presented an integrated model of these two methods to increase the efficiency and quality of the problem solving process for conceptual design. AD is used for systematically defining and structuring a problem into a hierarchy. Sometimes, the design matrix is coupled in AD which indicates the functional requirements are coupled. TRIZ separation principles can be used to separate non-independent design parameters, which provide innovative solutions at each hierarchical level. We applied the integrated model to the heating and drying equipment of bitumen reproduction device. The result verifies that the integrated model can work very well in conceptual design.展开更多
文摘Low-head hydraulic turbines are the subjects to individual approach of design. This comes from the fact that hydrological conditions are not of a standard character. Therefore, the design method of the hydraulic turbine stage has a great importance for those who may be interested in such an investment. As a first task in a design procedure the guide vane is considered. The proposed method is based on the solution of the inverse problem within the flame of 2D model. By the inverse problem authors mean a design of the blade shapes for given flow conditions. In the paper analytical solution for the simple cylindrical shape of a guide vane is presented. For the more realistic cases numerical solutions according to the axis-symmetrical model of the flow are also presented. The influence of such parameters as the inclination of trailing edge, the blockage factor due to blade thickness, the influence of loss due to dissipation are shown for the chosen simple geometrical example.
基金Funded by the Natural Science Foundation of China (No. 50575083)
文摘Axiomatic design (AD) and theory of inventive problem solving (TRIZ) are widely used in conceptual design. Both of them have limitations, however. We presented an integrated model of these two methods to increase the efficiency and quality of the problem solving process for conceptual design. AD is used for systematically defining and structuring a problem into a hierarchy. Sometimes, the design matrix is coupled in AD which indicates the functional requirements are coupled. TRIZ separation principles can be used to separate non-independent design parameters, which provide innovative solutions at each hierarchical level. We applied the integrated model to the heating and drying equipment of bitumen reproduction device. The result verifies that the integrated model can work very well in conceptual design.