This paper describes a virtual environment, which can present dynamic force transformation during the control of objects. A 5-DOF haptic interface with the capability to generate kinesthetic effect is combined. In thi...This paper describes a virtual environment, which can present dynamic force transformation during the control of objects. A 5-DOF haptic interface with the capability to generate kinesthetic effect is combined. In this system, the operator manipulates an object in a virtual environment by using the 5-DOF master arm. When contacting with the virtual object, the contact force can be calculated and shown in the graphic interface. The contact response and deformation of the virtual object, which are usually called haptic rendering, also can be performed. The study supplies an approach to improve the operator’s immersion and can be used in many tele-robot control fields.展开更多
Due to the fact that rolling contact fatigue is not easily detected, and residual life is not easily evaluated in the early stage of bearing life, a nondestructive testing method based on initial permeability is propo...Due to the fact that rolling contact fatigue is not easily detected, and residual life is not easily evaluated in the early stage of bearing life, a nondestructive testing method based on initial permeability is proposed. By analyzing the crack propagation mechanism, a fatigue state detection system based on differential signals is designed. A simulation model of the detection of the inner ring of the pulse signal is established by using the electromagnetic field simulation software. The effects of the height of the coil, the inner and outer diameter, the number of coil turns, the diameter and the height of the ferrite core of the probe on the differential value of the detection signal are simulated. The parameter combination of the maximum difference value of the signal is used as the structural size of the sensor, and the detection sensor is designed and fabricated. Moreover, the bearing fatigue test system is designed, and the bearing is tested. The results show that the system has good detection ability for rolling contact fatigue and verifies the mechanism and trend of crack propagation in the inner ring of the bearing.展开更多
In nanoscale technology, transistor aging is one of the most critical problems that impact on the reliability of circuits. Aging sensor is a good online way to detect the circuit aging, which performs during the opera...In nanoscale technology, transistor aging is one of the most critical problems that impact on the reliability of circuits. Aging sensor is a good online way to detect the circuit aging, which performs during the operating time with no influence of the normal operation of circuits. In this paper, a Dou- ble-edge-triggered Detection Sensor for circuit Aging (DSDA) is proposed, which employs data signal of logic circuits as its clock to control the sampling process. The simulation is done by Hspice using 45 nm technology. The results show that this technique is not case of the detection precision is more than 80% under aging fault effectively with the 8% power cost and 30% sensitive to the process variations. The worst the different process variations. It can detect performance cost.展开更多
Aiming at solving the problems such as time consuming and application limiting presented in the existing synchronous cooperative spectrum sensing schemes,a triggered asynchronous scheme based on Dempster-Shafer(D-S) t...Aiming at solving the problems such as time consuming and application limiting presented in the existing synchronous cooperative spectrum sensing schemes,a triggered asynchronous scheme based on Dempster-Shafer(D-S) theory was proposed.Sensing asynchronously,each cognitive user calculated the confidence measure functions with double threshold spectrum sensing method.When the useful report was received by the fusion center,a fusion process would be triggered.Then the sensing results were fused together based on D-S theory.The analysis and simulation results show that the proposed scheme can improve the spectrum sensing efficiency and reduce the calculation amount of the fusion center compared with the existing schemes.展开更多
Abstract: The force sensing resistor (FSR) and its con’struction and characteristic are described. By using the optimal electronic interface, the end result which is a direct proportionality between force and voltage...Abstract: The force sensing resistor (FSR) and its con’struction and characteristic are described. By using the optimal electronic interface, the end result which is a direct proportionality between force and voltage is obtained. The circuits of application for force and position measurements in the robotic control are given. The experiment that FSRs are placed on the fingers of BH - 1 dexterous hand as tactile sensors to measure the contacting forces shows FSR’s force sensitivity is optimized for use in the control of robot contacting with environment.展开更多
Neurotransmitter-containing synaptic vesicle(SV)fusion with the nerve terminal plasma membrane initiates neurotransmission in response to neuronal excitation.Under mild stimulation,the fused vesicular membrane is retr...Neurotransmitter-containing synaptic vesicle(SV)fusion with the nerve terminal plasma membrane initiates neurotransmission in response to neuronal excitation.Under mild stimulation,the fused vesicular membrane is retrieved via kiss-and-run and/or clathrin-mediated endocytosis,which is sufficient to maintain recycling of SVs.When neurons are challenged with very high stimulation,the number of fused SVs can be extremely high,resulting in significant plasma membrane addition.Under such conditions,a higher capacity retrieval pathway,bulk endocytosis,is activated to redress this large membrane imbalance.Despite first being described more than 40 years ago,the molecular mechanisms underpinning this important process have yet to be clearly defined.In this review,we highlight the current evidence for bulk endocytosis and its prevalence in various neuronal models,as well as discuss the underlying molecular components.展开更多
For accurate and stable haptic rendering, collision detection for interactive haptic applications has to be done by filling in or covering target objects as tightly as possible with bounding volumes (spheres, axis-al...For accurate and stable haptic rendering, collision detection for interactive haptic applications has to be done by filling in or covering target objects as tightly as possible with bounding volumes (spheres, axis-aligned bounding boxes, oriented bounding boxes, or polytopes). In this paper, we propose a method for creating bounding spheres with respect to the contact levels of details (CLOD), which can fit objects while maintaining the balance between high speed and precision of collision detection. Our method is composed mainly of two parts: bounding sphere formation and two-level collision detection. To specify further, bounding sphere formation can be divided into two steps: creating spheres and clustering spheres. Two-level collision detection has two stages as well: fast detection of spheres and precise detection in spheres. First, bounding spheres are created for initial fast probing to detect collisions of spheres. Once a collision is probed, a more precise detection is executed by examining the distance between a haptie pointer and each mesh inside the colliding boundaries. To achieve this refmed level of detection, a special data structure of a bounding volume needs to be defined to include all mesh information in the sphere. After performing a number of experiments to examine the usefulness and performance of our method, we have concluded that our algorithm is fast and precise enough for haptic simulations. The high speed detection is achieved through the clustering of spheres, while detection precision is realized by voxel-based direct collision detection. Our method retains its originality through the CLOD by distance-based clustering.展开更多
文摘This paper describes a virtual environment, which can present dynamic force transformation during the control of objects. A 5-DOF haptic interface with the capability to generate kinesthetic effect is combined. In this system, the operator manipulates an object in a virtual environment by using the 5-DOF master arm. When contacting with the virtual object, the contact force can be calculated and shown in the graphic interface. The contact response and deformation of the virtual object, which are usually called haptic rendering, also can be performed. The study supplies an approach to improve the operator’s immersion and can be used in many tele-robot control fields.
基金The Science and Technology Innovation Committee(STIC)of Shenzhen(No.JCYJ20180306174455080)
文摘Due to the fact that rolling contact fatigue is not easily detected, and residual life is not easily evaluated in the early stage of bearing life, a nondestructive testing method based on initial permeability is proposed. By analyzing the crack propagation mechanism, a fatigue state detection system based on differential signals is designed. A simulation model of the detection of the inner ring of the pulse signal is established by using the electromagnetic field simulation software. The effects of the height of the coil, the inner and outer diameter, the number of coil turns, the diameter and the height of the ferrite core of the probe on the differential value of the detection signal are simulated. The parameter combination of the maximum difference value of the signal is used as the structural size of the sensor, and the detection sensor is designed and fabricated. Moreover, the bearing fatigue test system is designed, and the bearing is tested. The results show that the system has good detection ability for rolling contact fatigue and verifies the mechanism and trend of crack propagation in the inner ring of the bearing.
基金Supported by the National Natural Science Foundation of China (No.61274036 and 61106038)Anhui Provincial Natural Science Foundation of China (No.090412034)
文摘In nanoscale technology, transistor aging is one of the most critical problems that impact on the reliability of circuits. Aging sensor is a good online way to detect the circuit aging, which performs during the operating time with no influence of the normal operation of circuits. In this paper, a Dou- ble-edge-triggered Detection Sensor for circuit Aging (DSDA) is proposed, which employs data signal of logic circuits as its clock to control the sampling process. The simulation is done by Hspice using 45 nm technology. The results show that this technique is not case of the detection precision is more than 80% under aging fault effectively with the 8% power cost and 30% sensitive to the process variations. The worst the different process variations. It can detect performance cost.
基金Science and Technology Projects of Xuzhou City,China(No.XX10A001)Jiangsu Provincial National Natural Science Foundation of China(No:BK20130199)
文摘Aiming at solving the problems such as time consuming and application limiting presented in the existing synchronous cooperative spectrum sensing schemes,a triggered asynchronous scheme based on Dempster-Shafer(D-S) theory was proposed.Sensing asynchronously,each cognitive user calculated the confidence measure functions with double threshold spectrum sensing method.When the useful report was received by the fusion center,a fusion process would be triggered.Then the sensing results were fused together based on D-S theory.The analysis and simulation results show that the proposed scheme can improve the spectrum sensing efficiency and reduce the calculation amount of the fusion center compared with the existing schemes.
文摘Abstract: The force sensing resistor (FSR) and its con’struction and characteristic are described. By using the optimal electronic interface, the end result which is a direct proportionality between force and voltage is obtained. The circuits of application for force and position measurements in the robotic control are given. The experiment that FSRs are placed on the fingers of BH - 1 dexterous hand as tactile sensors to measure the contacting forces shows FSR’s force sensitivity is optimized for use in the control of robot contacting with environment.
文摘Neurotransmitter-containing synaptic vesicle(SV)fusion with the nerve terminal plasma membrane initiates neurotransmission in response to neuronal excitation.Under mild stimulation,the fused vesicular membrane is retrieved via kiss-and-run and/or clathrin-mediated endocytosis,which is sufficient to maintain recycling of SVs.When neurons are challenged with very high stimulation,the number of fused SVs can be extremely high,resulting in significant plasma membrane addition.Under such conditions,a higher capacity retrieval pathway,bulk endocytosis,is activated to redress this large membrane imbalance.Despite first being described more than 40 years ago,the molecular mechanisms underpinning this important process have yet to be clearly defined.In this review,we highlight the current evidence for bulk endocytosis and its prevalence in various neuronal models,as well as discuss the underlying molecular components.
基金supported by Incheon National University Research,Korea(No.20120238)
文摘For accurate and stable haptic rendering, collision detection for interactive haptic applications has to be done by filling in or covering target objects as tightly as possible with bounding volumes (spheres, axis-aligned bounding boxes, oriented bounding boxes, or polytopes). In this paper, we propose a method for creating bounding spheres with respect to the contact levels of details (CLOD), which can fit objects while maintaining the balance between high speed and precision of collision detection. Our method is composed mainly of two parts: bounding sphere formation and two-level collision detection. To specify further, bounding sphere formation can be divided into two steps: creating spheres and clustering spheres. Two-level collision detection has two stages as well: fast detection of spheres and precise detection in spheres. First, bounding spheres are created for initial fast probing to detect collisions of spheres. Once a collision is probed, a more precise detection is executed by examining the distance between a haptie pointer and each mesh inside the colliding boundaries. To achieve this refmed level of detection, a special data structure of a bounding volume needs to be defined to include all mesh information in the sphere. After performing a number of experiments to examine the usefulness and performance of our method, we have concluded that our algorithm is fast and precise enough for haptic simulations. The high speed detection is achieved through the clustering of spheres, while detection precision is realized by voxel-based direct collision detection. Our method retains its originality through the CLOD by distance-based clustering.