Cephalopods play key roles in global marine ecosystems as both predators and preys.Regressive estimation of original size and weight of cephalopod from beak measurements is a powerful tool of interrogating the feeding...Cephalopods play key roles in global marine ecosystems as both predators and preys.Regressive estimation of original size and weight of cephalopod from beak measurements is a powerful tool of interrogating the feeding ecology of predators at higher trophic levels.In this study,regressive relationships among beak measurements and body length and weight were determined for an octopus species(Octopus variabilis),an important endemic cephalopod species in the northwest Pacific Ocean.A total of 193 individuals(63 males and 130 females) were collected at a monthly interval from Jiaozhou Bay,China.Regressive relationships among 6 beak measurements(upper hood length,UHL;upper crest length,UCL;lower hood length,LHL;lower crest length,LCL;and upper and lower beak weights) and mantle length(ML),total length(TL) and body weight(W) were determined.Results showed that the relationships between beak size and TL and beak size and ML were linearly regressive,while those between beak size and W fitted a power function model.LHL and UCL were the most useful measurements for estimating the size and biomass of O.variabilis.The relationships among beak measurements and body length(either ML or TL) were not significantly different between two sexes;while those among several beak measurements(UHL,LHL and LBW) and body weight(W) were sexually different.Since male individuals of this species have a slightly greater body weight distribution than female individuals,the body weight was not an appropriate measurement for estimating size and biomass,especially when the sex of individuals in the stomachs of predators was unknown.These relationships provided essential information for future use in size and biomass estimation of O.variabilis,as well as the estimation of predator/prey size ratios in the diet of top predators.展开更多
A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k-e turbulence model was applied to describe the flow, t...A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k-e turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k-e model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of 〈5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.展开更多
Co_(2)VO_(4) with Co tetrahedrons and octahedrons of transition metal oxides has achieved progress in electrocatalysts and batteries.However,high metal-metal interactions make it challenging to maintain high reactivit...Co_(2)VO_(4) with Co tetrahedrons and octahedrons of transition metal oxides has achieved progress in electrocatalysts and batteries.However,high metal-metal interactions make it challenging to maintain high reactivity as well as increase the conductivity and stability of supercapacitors.In this work,spinel-structured CoZn_(0.5)V_(1.5)O_(4) with a high specific surface area was synthesized through an ion-exchange process from the metal-organic frameworks of zinc-cobalt.Density functional theory calculations indicate that the replacement of transition metal by Zn can decrease the interaction between the transition metals,leading to a downshift in the π^(∗)-orbitals(V-O)and half-filled a_(1g) orbitals near the Fermi level,thus increasing the conductivity and stability of CoZn_(0.5)V_(1.5)O_(4).As a supercapacitor electrode,CoZn_(0.5)V_(1.5)O_(4) exhibits high cycling durability(99.4% capacitance retention after 18,000 cycles)and specific capacitance(1100mFcm^(-2) at 1mAcm^(-2)).This work provides the possibility of designing octahedral and tetrahedral sites in transition metal oxides to improve their electrochemical performance.展开更多
基金funded by The National Natural Science Foundation of China(41006083)The Shandong Provincial Natural Science Foundation,China(ZR2010DQ026)+1 种基金The Fundamental Research Funds for the Central Universities(201022001,201262004)The Specialized Research Program for Marine Public Welfare Industry from the State Oceanic Administration,P.R.China(200805066)
文摘Cephalopods play key roles in global marine ecosystems as both predators and preys.Regressive estimation of original size and weight of cephalopod from beak measurements is a powerful tool of interrogating the feeding ecology of predators at higher trophic levels.In this study,regressive relationships among beak measurements and body length and weight were determined for an octopus species(Octopus variabilis),an important endemic cephalopod species in the northwest Pacific Ocean.A total of 193 individuals(63 males and 130 females) were collected at a monthly interval from Jiaozhou Bay,China.Regressive relationships among 6 beak measurements(upper hood length,UHL;upper crest length,UCL;lower hood length,LHL;lower crest length,LCL;and upper and lower beak weights) and mantle length(ML),total length(TL) and body weight(W) were determined.Results showed that the relationships between beak size and TL and beak size and ML were linearly regressive,while those between beak size and W fitted a power function model.LHL and UCL were the most useful measurements for estimating the size and biomass of O.variabilis.The relationships among beak measurements and body length(either ML or TL) were not significantly different between two sexes;while those among several beak measurements(UHL,LHL and LBW) and body weight(W) were sexually different.Since male individuals of this species have a slightly greater body weight distribution than female individuals,the body weight was not an appropriate measurement for estimating size and biomass,especially when the sex of individuals in the stomachs of predators was unknown.These relationships provided essential information for future use in size and biomass estimation of O.variabilis,as well as the estimation of predator/prey size ratios in the diet of top predators.
基金Supported by the Application Research Project of Post-Doctoral Researchers in Qingdao(No.ZQ51201415037)the Modern Agriculture Industry System Construction of Special Funds(No.CARS-50-G10)+1 种基金the Special Project about Independent Innovation and Achievement Transformation of Shandong Province(No.2014ZZCX07102)the Key R&D Program of Jiangsu Province(No.BE2015328)
文摘A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k-e turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k-e model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of 〈5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.
基金supported by the National Natural Science Foundation of China(51872204,52072261 and 22011540379)the National Key Research and Development Program of China(2017YFA0204600)+1 种基金Shanghai Social Development Science and Technology Project(20dz1201800)Shanghai Sailing Program(21YF1430900).
文摘Co_(2)VO_(4) with Co tetrahedrons and octahedrons of transition metal oxides has achieved progress in electrocatalysts and batteries.However,high metal-metal interactions make it challenging to maintain high reactivity as well as increase the conductivity and stability of supercapacitors.In this work,spinel-structured CoZn_(0.5)V_(1.5)O_(4) with a high specific surface area was synthesized through an ion-exchange process from the metal-organic frameworks of zinc-cobalt.Density functional theory calculations indicate that the replacement of transition metal by Zn can decrease the interaction between the transition metals,leading to a downshift in the π^(∗)-orbitals(V-O)and half-filled a_(1g) orbitals near the Fermi level,thus increasing the conductivity and stability of CoZn_(0.5)V_(1.5)O_(4).As a supercapacitor electrode,CoZn_(0.5)V_(1.5)O_(4) exhibits high cycling durability(99.4% capacitance retention after 18,000 cycles)and specific capacitance(1100mFcm^(-2) at 1mAcm^(-2)).This work provides the possibility of designing octahedral and tetrahedral sites in transition metal oxides to improve their electrochemical performance.