A series of triaxial laboratory experiments are performed on thick-walled hollow cylindrical samples of boom clay.The aim of this testing program is to better understand the anisotropic deformation during the excavati...A series of triaxial laboratory experiments are performed on thick-walled hollow cylindrical samples of boom clay.The aim of this testing program is to better understand the anisotropic deformation during the excavation.The testing conditions are similar to those to be experienced by host rocks around disposal galleries for radioactive waste.X-ray computed tomography is performed at different steps for each test with the samples remaining inside the loading cell.Initial analysis of the tomography images allows of the observation of the deformation of the central hole.In addition,particles manual tracking and 3D volumetric digital image correlation processing methods are considered being used to analyze the particles displacements and the boundary deformation of the sample quantitatively.An unsymmetrical damaged zone is induced around the hole,with a reverse deformation trend being found at the boundary after unloading,which indicates that the significant anisotropic deformation of boom clay can be induced by mechanical unloading.展开更多
Objective The treatment planning system currently represents one of the basics of radiation therapy,because it is the only method to estimate patient dose delivery fast forward and accurately represent estimated tumor...Objective The treatment planning system currently represents one of the basics of radiation therapy,because it is the only method to estimate patient dose delivery fast forward and accurately represent estimated tumor location of the tumor with the possibility of estimating densities in the tissue surrounding the tumor to overcome dose calculation defects but radial estimated the patient.Despite the flaws associated with the systems and calculates the dose of your programs in all programs currently existing in the world.Than necessary,to the existence of a review of the accuracy of accounts and how to confirm the radiation dose to the patient programs.Methods A total of 35 cancer patients were considered for this study,with 245 field measurements made with low-and high-energy diode detectors for brain and prostate cases.The treatments for all patients were planned using Eclipse Treatment Planning System version 13.6.Results Of the 105 field measurements made for the prostate cancer patients,16 included discrepancies outside the ±5% action level.Of the 145 measurements taken of the brain cases,there were four outside the ±5% action level.The results indicated a higher degree of accuracy.The study revealed that,for the prostate measurements,the higher discrepancy in the doses for the particular fields(exceeding the action level) may have been due to the isocenter being very close to the jaws and multi-leaf collimator of the linear accelerator machine.As a result,scatter from the jaws and the multi-leaf collimator could have contributed to the high dose delivered to the diode;hence,a probable higher discrepancy of the dose in more brain cases due highest quality of VMAT technique and fixation system.Conclusion A greater percentage of the observed discrepancies were well within the set tolerance level.However,it is recommended that the positioning of the diode on the patient's skin and the angular sensitivity of the diodes be reconsidered.It is also recommended that a more accurate calculation of expected diode values be performed,especially for fields that pass through the table.These efforts would achieve action levels of ±5%.展开更多
Objective: The aim of this study was to compare bone marrow-sparing intensity-modulated radiotherapy (IMRT) with IMRT without entering pelvic bone marrow as a planning constraint in the treatment of cervical cancer...Objective: The aim of this study was to compare bone marrow-sparing intensity-modulated radiotherapy (IMRT) with IMRT without entering pelvic bone marrow as a planning constraint in the treatment of cervical cancer after hysterectomy. Methods: For a cohort of 10 patients, bone marrow-sparing IMRT and routine IMRT planning were designed. The prescribed dose was 45 Gy/1.8 Gy/25f, 95% of the planning target volume received this dose. Doses were computed with a commercially available treatment planning system (TPS) using convolution/superimposition (CS) algorithm. Plans were compared according to dose-volume histogram (DVH) analysis in terms of planning target volume (PTV) homogeneity and conformity indices (HI and CI) as well as organs at risk (OARs) dose and volume parameters. Results: Bone marrow-sparing IMRT had an vantages over routine IMRT in terms of CI, but inferior to the latter for HI. Compared with routine IMRT, V5, Vl0, V20, V30, V40 of pelvic bone marrow of bone marrow-sparing IMRT reduced by 1.81%, 8.61%, 31.81%, 29.50%, 28.29%, respectively. No statistically significant differences were observed between bone marrow-sparing IMRT and routine IMRT in terms of small bowel, bladder and rectum. Conclusion: For patients with cervical cancer after hysterectomy, bone marrowsparing IMRT reduced the pelvic bone marrow volume irradiated at all dose levels and might be conducive to preventing the occurrence of acute bone marrow toxicity.展开更多
Traditional methods for plan path prediction have low accuracy and stability. In this paper, we propose a novel approach for plan path prediction based on relative motion between positions(RMBP) by mining historical f...Traditional methods for plan path prediction have low accuracy and stability. In this paper, we propose a novel approach for plan path prediction based on relative motion between positions(RMBP) by mining historical flight trajectories. A probability statistical model is introduced to model the stochastic factors during the whole flight process. The model object is the sequence of velocity vectors in the three-dimensional Earth space. First, we model the moving trend of aircraft including the speed(constant, acceleration, or deceleration), yaw(left, right, or straight), and pitch(climb, descent, or cruise) using a hidden Markov model(HMM) under the restrictions of aircraft performance parameters. Then, several Gaussian mixture models(GMMs) are used to describe the conditional distribution of each moving trend. Once the models are built, machine learning algorithms are applied to obtain the optimal parameters of the model from the historical training data. After completing the learning process, the velocity vector sequence of the flight is predicted by the proposed model under the Bayesian framework, so that we can use kinematic equations, depending on the moving patterns, to calculate the flight position at every radar acquisition cycle. To obtain higher prediction accuracy, a uniform interpolation method is used to correct the predicted position each second. Finally, a plan trajectory is concatenated by the predicted discrete points. Results of simulations with collected data demonstrate that this approach not only fulfils the goals of traditional methods, such as the prediction of fly-over time and altitude of waypoints along the planned route, but also can be used to plan a complete path for an aircraft with high accuracy. Experiments are conducted to demonstrate the superiority of this approach to some existing methods.展开更多
This paper addresses the problem of accuracy characterization and measurement point planning for 3-D workpiece localization in the presence of part surface errors and measurement errors. Two frame-invariant functions ...This paper addresses the problem of accuracy characterization and measurement point planning for 3-D workpiece localization in the presence of part surface errors and measurement errors. Two frame-invariant functions of the infinitesimal rigid body displacement are defined to quantify the localization accuracy required by manufacturing processes. Then, two kinds of frame-invariant indices are derived to characterize the sensitivities of the accuracy measures to the sampling errors at the measurement points. With a dense set of discrete points on the workpiece datum surfaces pre-defined as candidates for measurement, planning of probing points for accurate recovery of part location is modeled as a combinatorial problem focusing on minimizing the accuracy sensitivity index. Based on an interchange rule, a greedy algorithm is developed to efficiently find a near-optimal solution. It is also shown that if the number of the measurement points is sufficiently large, there is no need to optimize their positions. Example confirms the validity of the presented indices and algorithm. Keywords localization - fixture - accuracy - uncertainty assessment - measurement planning - optimal design - heuristic algorithm展开更多
基金supported by Fundamental Research Funds for the Central Universities (No.FRF-TP-14-033A1)TIMODAZ project as part of the sixth EURATOM framework programme for nuclear research and training activities (2002–2006)The Department of Diagnostic and Interventional Radiology of the CHUV and the collaboration with Laboratoire 3S-R,Grenoble are gratefully acknowledged
文摘A series of triaxial laboratory experiments are performed on thick-walled hollow cylindrical samples of boom clay.The aim of this testing program is to better understand the anisotropic deformation during the excavation.The testing conditions are similar to those to be experienced by host rocks around disposal galleries for radioactive waste.X-ray computed tomography is performed at different steps for each test with the samples remaining inside the loading cell.Initial analysis of the tomography images allows of the observation of the deformation of the central hole.In addition,particles manual tracking and 3D volumetric digital image correlation processing methods are considered being used to analyze the particles displacements and the boundary deformation of the sample quantitatively.An unsymmetrical damaged zone is induced around the hole,with a reverse deformation trend being found at the boundary after unloading,which indicates that the significant anisotropic deformation of boom clay can be induced by mechanical unloading.
文摘Objective The treatment planning system currently represents one of the basics of radiation therapy,because it is the only method to estimate patient dose delivery fast forward and accurately represent estimated tumor location of the tumor with the possibility of estimating densities in the tissue surrounding the tumor to overcome dose calculation defects but radial estimated the patient.Despite the flaws associated with the systems and calculates the dose of your programs in all programs currently existing in the world.Than necessary,to the existence of a review of the accuracy of accounts and how to confirm the radiation dose to the patient programs.Methods A total of 35 cancer patients were considered for this study,with 245 field measurements made with low-and high-energy diode detectors for brain and prostate cases.The treatments for all patients were planned using Eclipse Treatment Planning System version 13.6.Results Of the 105 field measurements made for the prostate cancer patients,16 included discrepancies outside the ±5% action level.Of the 145 measurements taken of the brain cases,there were four outside the ±5% action level.The results indicated a higher degree of accuracy.The study revealed that,for the prostate measurements,the higher discrepancy in the doses for the particular fields(exceeding the action level) may have been due to the isocenter being very close to the jaws and multi-leaf collimator of the linear accelerator machine.As a result,scatter from the jaws and the multi-leaf collimator could have contributed to the high dose delivered to the diode;hence,a probable higher discrepancy of the dose in more brain cases due highest quality of VMAT technique and fixation system.Conclusion A greater percentage of the observed discrepancies were well within the set tolerance level.However,it is recommended that the positioning of the diode on the patient's skin and the angular sensitivity of the diodes be reconsidered.It is also recommended that a more accurate calculation of expected diode values be performed,especially for fields that pass through the table.These efforts would achieve action levels of ±5%.
文摘Objective: The aim of this study was to compare bone marrow-sparing intensity-modulated radiotherapy (IMRT) with IMRT without entering pelvic bone marrow as a planning constraint in the treatment of cervical cancer after hysterectomy. Methods: For a cohort of 10 patients, bone marrow-sparing IMRT and routine IMRT planning were designed. The prescribed dose was 45 Gy/1.8 Gy/25f, 95% of the planning target volume received this dose. Doses were computed with a commercially available treatment planning system (TPS) using convolution/superimposition (CS) algorithm. Plans were compared according to dose-volume histogram (DVH) analysis in terms of planning target volume (PTV) homogeneity and conformity indices (HI and CI) as well as organs at risk (OARs) dose and volume parameters. Results: Bone marrow-sparing IMRT had an vantages over routine IMRT in terms of CI, but inferior to the latter for HI. Compared with routine IMRT, V5, Vl0, V20, V30, V40 of pelvic bone marrow of bone marrow-sparing IMRT reduced by 1.81%, 8.61%, 31.81%, 29.50%, 28.29%, respectively. No statistically significant differences were observed between bone marrow-sparing IMRT and routine IMRT in terms of small bowel, bladder and rectum. Conclusion: For patients with cervical cancer after hysterectomy, bone marrowsparing IMRT reduced the pelvic bone marrow volume irradiated at all dose levels and might be conducive to preventing the occurrence of acute bone marrow toxicity.
基金Project supported by the National Natural Science Foundation of China(No.71573184)the National Key Scientific Instrument and Equipment Development Project(No.2013YQ490879)the Special Program of Office of China Air Traffic Control Commission(No.GKG201403004)
文摘Traditional methods for plan path prediction have low accuracy and stability. In this paper, we propose a novel approach for plan path prediction based on relative motion between positions(RMBP) by mining historical flight trajectories. A probability statistical model is introduced to model the stochastic factors during the whole flight process. The model object is the sequence of velocity vectors in the three-dimensional Earth space. First, we model the moving trend of aircraft including the speed(constant, acceleration, or deceleration), yaw(left, right, or straight), and pitch(climb, descent, or cruise) using a hidden Markov model(HMM) under the restrictions of aircraft performance parameters. Then, several Gaussian mixture models(GMMs) are used to describe the conditional distribution of each moving trend. Once the models are built, machine learning algorithms are applied to obtain the optimal parameters of the model from the historical training data. After completing the learning process, the velocity vector sequence of the flight is predicted by the proposed model under the Bayesian framework, so that we can use kinematic equations, depending on the moving patterns, to calculate the flight position at every radar acquisition cycle. To obtain higher prediction accuracy, a uniform interpolation method is used to correct the predicted position each second. Finally, a plan trajectory is concatenated by the predicted discrete points. Results of simulations with collected data demonstrate that this approach not only fulfils the goals of traditional methods, such as the prediction of fly-over time and altitude of waypoints along the planned route, but also can be used to plan a complete path for an aircraft with high accuracy. Experiments are conducted to demonstrate the superiority of this approach to some existing methods.
基金the National Natural Science Foundation of China (Grant Nos. 50205018 , 50390063)the Key Basic Research Program of Shanghai Government (Grant No. 04JCI4050) the State Key Laboratory for Manufacturing System Engineering.
文摘This paper addresses the problem of accuracy characterization and measurement point planning for 3-D workpiece localization in the presence of part surface errors and measurement errors. Two frame-invariant functions of the infinitesimal rigid body displacement are defined to quantify the localization accuracy required by manufacturing processes. Then, two kinds of frame-invariant indices are derived to characterize the sensitivities of the accuracy measures to the sampling errors at the measurement points. With a dense set of discrete points on the workpiece datum surfaces pre-defined as candidates for measurement, planning of probing points for accurate recovery of part location is modeled as a combinatorial problem focusing on minimizing the accuracy sensitivity index. Based on an interchange rule, a greedy algorithm is developed to efficiently find a near-optimal solution. It is also shown that if the number of the measurement points is sufficiently large, there is no need to optimize their positions. Example confirms the validity of the presented indices and algorithm. Keywords localization - fixture - accuracy - uncertainty assessment - measurement planning - optimal design - heuristic algorithm