Supposing that the overall situation is dug out from the distributed monitoring nodes, there should be two critical obstacles, heterogenous schema and instance, to integrating heterogeneous data from different monitor...Supposing that the overall situation is dug out from the distributed monitoring nodes, there should be two critical obstacles, heterogenous schema and instance, to integrating heterogeneous data from different monitoring sensors. To tackle the challenge of heterogenous schema, an instance-based approach for schema mapping, named instance-based machine-learning (IML) approach was described. And to solve the problem of heterogenous instance, a novel approach, called statistic-based clustering (SBC) approach, which utilized clustering and statistics technologies to match large scale sources holistically, was also proposed. These two algorithms utilized the machine-leaning and clustering technology to improve the accuracy. Experimental analysis shows that the IML approach is more precise than SBC approach, reaching at least precision of 81% and recall rate of 82%. Simulation studies further show that SBC can tackle large scale sources holisticalty with 85% recall rate when there are 38 data sources.展开更多
基金Projects(2007AA01Z126, 2007AA01Z474) supported by the National High-Tech Research and Development Program of ChinaProject(NCET-06-0928) supported by the Program for New Century Excellent Talents in University
文摘Supposing that the overall situation is dug out from the distributed monitoring nodes, there should be two critical obstacles, heterogenous schema and instance, to integrating heterogeneous data from different monitoring sensors. To tackle the challenge of heterogenous schema, an instance-based approach for schema mapping, named instance-based machine-learning (IML) approach was described. And to solve the problem of heterogenous instance, a novel approach, called statistic-based clustering (SBC) approach, which utilized clustering and statistics technologies to match large scale sources holistically, was also proposed. These two algorithms utilized the machine-leaning and clustering technology to improve the accuracy. Experimental analysis shows that the IML approach is more precise than SBC approach, reaching at least precision of 81% and recall rate of 82%. Simulation studies further show that SBC can tackle large scale sources holisticalty with 85% recall rate when there are 38 data sources.