This paper investigates the generation and evolution of continuous-variable entanglement in an asymmetric coupled-quantum well (CQW) system. Our numerical results show that this CQW system can be regarded as a sourc...This paper investigates the generation and evolution of continuous-variable entanglement in an asymmetric coupled-quantum well (CQW) system. Our numerical results show that this CQW system can be regarded as a source of macroscopic entangled light over a wide range of initial states of the cavity field. This investigation can be used for achieving the macroscopic entangled light in the CQW solid-state medium, which is much more praeticaJ than that in an atomic medium because of its flexible design and the controllable interference strength.展开更多
The manuscript deals with the possibility of application of collective behavior of quantum particles to realize the quantum calculation procedure. The above collective behavior is likely resulted from interelectron co...The manuscript deals with the possibility of application of collective behavior of quantum particles to realize the quantum calculation procedure. The above collective behavior is likely resulted from interelectron correlations, characteristic for strongly correlated systems containing atoms with unoccupied 3d-, 4f- and 5f- shells. Among such systems can be the heterospin systems, complexes of paramagnetic ions of transition metals with organic radicals, because for such objects, spin-spin interaction between unpaired electron spins of different paramagnetic centers is typical. To apply the aforementioned possibility for the organization of real quantum calculations, it is necessary to synthesize such paramagnetic molecules (paramagnetic clusters), where the entangled states will be realized naturally by self-organization of atoms incorporated in these molecules, i.e., without additional external effect of q-bits on the system. The specified self-organization may be due to intramolecular processes and, in particular, intramolecular rearrangement called valence tautomerism, which leads to heterogeneous magnetic states, i.e., to phase layering in paramagnetic cluster owing to interelectron correlations. The states realized during the phase layering can be used for coding the digits. Since such states correspond to specific structures of para-magnetic molecule, they can exist as much as long under certain conditions. In turn, it means that the account of the interelectron correlations, which take place in strongly correlated compounds, allows (at least, in principle) one to create elementary quantum bit of the information capable of modeling the elementary logical operations. Creation of a network of such quantum bits combined in a certain sequence should be considered as a practical step on a way to experimental realization of the idea of quantum computer creation. The group consisting of three quantum points can make the basis of quantum computer. In such a gate, quantum points can be connected via the interaction modeled by spin-spin interaction, characteristic for ABX system in NMR spectroscopy. The tunnel effect, which can be easily realized and controlled, can act as an indicator of bonding in such a block. The calculation procedure can be organized assuming that the initial state of the group corresponds to 1. Infringement of such a state indicates to zero (or, on the contrary). Thus, the calculation in the binary system becomes organized. The creation of a network on the basis of combination of such processors in certain sequence should be considered as a practical step on a way to experimental realization of the idea of the quantum computer creation.展开更多
This paper considers the Geom/G/1 queueing model with feedback according to a late arrival system with delayed access (LASDA). Using recursive method, this paper studies the transient property of the queue size from...This paper considers the Geom/G/1 queueing model with feedback according to a late arrival system with delayed access (LASDA). Using recursive method, this paper studies the transient property of the queue size from the initial state N(0+) = i. Some new results about the recursive expression of the transient queue size distribution at any epoch n+ and the recursive formulae of the equilibrium distribution are obtained. Furthermore, the recursive formulae of the equilibrium queue size distribution at epoch n-, and n are obtained, too. The important relations between stationary queue size distributions at different epochs are discovered (being different from the relations given in M/G/I queueing system). The model discussed in this paper can be widely applied in all kinds of communications and computer network.展开更多
We study the optimal quantum control of heteronuclear two-qubit systems described by a Hamiltonian containing both nonlocal internal drift and local control terms.We derive an explicit formula to compute the minimum t...We study the optimal quantum control of heteronuclear two-qubit systems described by a Hamiltonian containing both nonlocal internal drift and local control terms.We derive an explicit formula to compute the minimum time required to steer the system from an initial state to a specified final state.As applications the minimal time to implement Controlled-NOT gate,SWAP gate and Controlled-U gate is calculated in detail.The experimental realizations of these quantum gates are explicitly presented.展开更多
基金The project supported in part by Natural Science Foundation of China under Grant Nos. 10575040, 10634060, 10874050, and 10704017 ; National Foundation Research Program of China under Grant No. 2005CB724508; the Foundation from the Ministry of the National Education of China under Grant No. 200804870051 ; the Science Innovation Foundation of Huazhong University of Science and Technology under Grant No. HF-06-011-12-012
文摘This paper investigates the generation and evolution of continuous-variable entanglement in an asymmetric coupled-quantum well (CQW) system. Our numerical results show that this CQW system can be regarded as a source of macroscopic entangled light over a wide range of initial states of the cavity field. This investigation can be used for achieving the macroscopic entangled light in the CQW solid-state medium, which is much more praeticaJ than that in an atomic medium because of its flexible design and the controllable interference strength.
文摘The manuscript deals with the possibility of application of collective behavior of quantum particles to realize the quantum calculation procedure. The above collective behavior is likely resulted from interelectron correlations, characteristic for strongly correlated systems containing atoms with unoccupied 3d-, 4f- and 5f- shells. Among such systems can be the heterospin systems, complexes of paramagnetic ions of transition metals with organic radicals, because for such objects, spin-spin interaction between unpaired electron spins of different paramagnetic centers is typical. To apply the aforementioned possibility for the organization of real quantum calculations, it is necessary to synthesize such paramagnetic molecules (paramagnetic clusters), where the entangled states will be realized naturally by self-organization of atoms incorporated in these molecules, i.e., without additional external effect of q-bits on the system. The specified self-organization may be due to intramolecular processes and, in particular, intramolecular rearrangement called valence tautomerism, which leads to heterogeneous magnetic states, i.e., to phase layering in paramagnetic cluster owing to interelectron correlations. The states realized during the phase layering can be used for coding the digits. Since such states correspond to specific structures of para-magnetic molecule, they can exist as much as long under certain conditions. In turn, it means that the account of the interelectron correlations, which take place in strongly correlated compounds, allows (at least, in principle) one to create elementary quantum bit of the information capable of modeling the elementary logical operations. Creation of a network of such quantum bits combined in a certain sequence should be considered as a practical step on a way to experimental realization of the idea of quantum computer creation. The group consisting of three quantum points can make the basis of quantum computer. In such a gate, quantum points can be connected via the interaction modeled by spin-spin interaction, characteristic for ABX system in NMR spectroscopy. The tunnel effect, which can be easily realized and controlled, can act as an indicator of bonding in such a block. The calculation procedure can be organized assuming that the initial state of the group corresponds to 1. Infringement of such a state indicates to zero (or, on the contrary). Thus, the calculation in the binary system becomes organized. The creation of a network on the basis of combination of such processors in certain sequence should be considered as a practical step on a way to experimental realization of the idea of the quantum computer creation.
基金supported by the National Natural Science Foundation of China under Grant No. 70871084the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 200806360001the Scientific Research Fund of Southwestern University of Finance and Economics
文摘This paper considers the Geom/G/1 queueing model with feedback according to a late arrival system with delayed access (LASDA). Using recursive method, this paper studies the transient property of the queue size from the initial state N(0+) = i. Some new results about the recursive expression of the transient queue size distribution at any epoch n+ and the recursive formulae of the equilibrium distribution are obtained. Furthermore, the recursive formulae of the equilibrium queue size distribution at epoch n-, and n are obtained, too. The important relations between stationary queue size distributions at different epochs are discovered (being different from the relations given in M/G/I queueing system). The model discussed in this paper can be widely applied in all kinds of communications and computer network.
基金supported by the National Natural Science Foundation of China(Grant No.11275131)the National Research Foundation for the Doctoral Program of Higher Education of China
文摘We study the optimal quantum control of heteronuclear two-qubit systems described by a Hamiltonian containing both nonlocal internal drift and local control terms.We derive an explicit formula to compute the minimum time required to steer the system from an initial state to a specified final state.As applications the minimal time to implement Controlled-NOT gate,SWAP gate and Controlled-U gate is calculated in detail.The experimental realizations of these quantum gates are explicitly presented.