The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are als...The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are also discussed.展开更多
Equilibrium Si isotope fractionation factors among orthosilicic acid(i.e.,H4 Si O4(aq)), quartz and the adsorption complexes of H4 Si O4(aq)on Fe(III)-oxyhydroxide surface were calculated using the full-electron wave-...Equilibrium Si isotope fractionation factors among orthosilicic acid(i.e.,H4 Si O4(aq)), quartz and the adsorption complexes of H4 Si O4(aq)on Fe(III)-oxyhydroxide surface were calculated using the full-electron wave-function quantum chemistry methods [i.e., B3LYP/6-311G(2df,p)]with a new cluster-model-based treatment. Solvation effects were carefully included in our calculations via water-droplet method combined with implicit solvent models(e.g., PCM).The results revealed that, if it is under equilibrium conditions,heavy Si isotopes would be significantly enriched in quartz in comparison to H4 Si O4(aq). However, most of the field observations suggested that quartz would have identical or even depleted d30 Si values compared to that of H4 Si O4(aq). To explain this discrepancy between the equilibrium calculation results and the field observations, the kinetic isotope effect(KIE) associated with the formation of amorphous silica,which usually is the precursor of crystalline quartz, was investigated using quantum chemistry methods. The KIE results showed that amorphous silica would be significantly enriched in light Si isotopes during its formation. Our equilibrium fractionation results, however, matched a special type of quartz(i.e., Herkimer ‘‘diamond'') very well, due to its nearly equilibrated precipitation condition. Opposite to the case of precipitated quartz, a large equilibrium Si isotope fractionation(i.e.,-3.0 %) was found between the absorbed bidentate Si surface complexes(i.e.,2C [ Fe2O2Si(OH)2) and H4 Si O4(aq). This calculated equilibrium Si isotope fractionation factor largely differed from a previous experimental result(ca.-1.08 %). We found that the formation of transient or temporary surface complexes [e.g.,1V [ Fe2OSi(OH)3] may have accounted for the smaller net fractionation observed.With the equilibrium and kinetic Si isotope fractionation factors provided here, the distributions and changes of Si isotope compositions in the Earth's surface systems can be better understood.展开更多
The bulk electronic structure of kaolinite (001) plane was studied with quantum mechanical calculations. The CASTEP parameterization of ultrasoft pseudopotentials without core corrections was used to optimize the stru...The bulk electronic structure of kaolinite (001) plane was studied with quantum mechanical calculations. The CASTEP parameterization of ultrasoft pseudopotentials without core corrections was used to optimize the structure of kaolinite bulk and slab models. The results show that Fermi energy of kaolinite (001) plane is 3.05 eV, and the band gap is 4.52 eV. The partial density of states (PDOS) of kaolinite (001) plane indicates that Al-O and Si-O bonds on the mineral surface are highly polar. The oxygen atoms of hydroxyl groups in surface layer are capable of forming hydrogen bond with the head group of cationic collectors. The properties of dodecylamine (DDA) cation were also calculated by density function theory (DFT) method at B3LYP/6-31G (d) level for illuminating the flotation processes of kaolinite. Besides the electrostatic attraction, the mechanism between kaolinite and DDA is found to be hydrogen bonds under acidic condition.展开更多
It has long been found that the flow pattern of the liquid phase on distillation tray is of great importance on distillation process performance. But until now, there was very few published work on quantitative invest...It has long been found that the flow pattern of the liquid phase on distillation tray is of great importance on distillation process performance. But until now, there was very few published work on quantitative investigation of this subject. By combining the computational fluid dynamics (CFD) with the mass transfer equation, a theoretical model is proposed for predicting the details of velocity and concentration distributions as well as the tray efficiency of distillation tray column. Using the proposed model, four different cases corresponding to different assumptions of liquid and vapor flowing condition for a distillation tray column were investigated. In Case I, the distributions of velocity and concentration of the incoming liquid from the downcomer and the uprising vapor from the underneath tray spacing are uniform. In Case n, the distribution of the incoming liquid is non-uniform but the uprising vapor is uniform. In Case HI, the distribution of the incoming liquid is uniform but the uprising vapor is non-uniform. In Case IV, the distributions of both the incoming liquid and the uprising vapor are non-uniform. The details of velocity and concentration distributions on a multiple sieve tray distillation column in four different cases were simulated using the proposed model. It is found that the shape of the simulated concentration profiles of vapor and the liquid is quite different from case to case. The computed results also show that the tray efficiency is highly reduced by the maldistribution of velocity and concentration of the incoming liquid and uprising vapor. The tray efficiency for Case I is higher than Case Ⅱ or Case Ⅲ, and that for Case Ⅳ is the lowest. It also reveals that the accumulated effect of maldistribution becomes more pronounced when the number of column trays increased. The present study demonstrates that the use of computational method to predict the mass transfer efficiency for the tray column, especially for the large one, is feasible.展开更多
The C--C bond dissociation energy (BDE) is a very important data in research of hydrocarbon cracking reactions, because it reflects the difficulty level of chemical reactions. But it is very difficult to obtain the ...The C--C bond dissociation energy (BDE) is a very important data in research of hydrocarbon cracking reactions, because it reflects the difficulty level of chemical reactions. But it is very difficult to obtain the C--C bond dissociation energy (BDE) by experiments, so using quantum chemistry calculation such as density functional theory (DFT) to study the C--C bond dissociation energy is a very useful means. The impact of acceptor substituents and donor substituents on the C--C bond length distribution was studied.展开更多
Equilibrium Zn isotope fractionation was inves- tigated using first-principles quantum chemistry methods at the B3LYP/6-311G level. The volume variable cluster model method was used to calculate isotope fractionation ...Equilibrium Zn isotope fractionation was inves- tigated using first-principles quantum chemistry methods at the B3LYP/6-311G level. The volume variable cluster model method was used to calculate isotope fractionation factors of sphalerite, smithsonite, calcite, anorthite, for- sterite, and enstatite. The water-droplet method was used to calculate Zn isotope fractionation factors of Zn^2+-bearing aqueous species; their reduced partition function ratio factors decreased in the order [Zn(H2O)6]^2+ 〉 [ZnCl(H2O)5]^ + 〉 [ZnCl2(H2O)4] 〉 [ZnCl3(H20)2]^-〉 ZnCl4]^2-. Gas- eous ZnCl2 was also calculated for vaporization processes. Kinetic isotope fractionation of diffusional processes in a vacuum was directly calculated using formulas provided by Richter and co-workers. Our calculations show that in addition to the kinetic isotope effect of diffusional processes, equilibrium isotope fractionation also contributed nontriv- ially to observed Zn isotope fractionation of vaporization processes. The calculated net Zn isotope fractionation of vaporization processes was 7-7.5‰, with ZnCl2 as the gas- eous species. This matches experimental observations of the range of Zn isotope distribution of lunar samples. Therefore, vaporization processes may be the cause of the large distri- bution of Zn isotope signals found on the Moon. However, we cannot further distinguish the origin of such vaporization processes; it might be due either to igneous rock melting inmeteorite bombardments or to a giant impact event. Fur- thermore, isotope fractionation between Zn-bearing aqueous species and minerals that we have provided helps explain Zn isotope data in the fields of ore deposits and petrology.展开更多
A three-dimensional geometric model was set up for the oxidative coupling of methane(OCM) fixed bed reactor loaded with Na_3PO_4-Mn/SiO_2/cordierite monolithic catalyst,and an improved Stansch kinetic model was establ...A three-dimensional geometric model was set up for the oxidative coupling of methane(OCM) fixed bed reactor loaded with Na_3PO_4-Mn/SiO_2/cordierite monolithic catalyst,and an improved Stansch kinetic model was established to calculate the OCM reactions using the computational fluid dynamics method and Fluent software.The simulation conditions were completely the same with the experimental conditions that the volume velocity of the reactant is 80 ml·min^(-1) under standard state,the CH_4/O_2 ratio is 3 and the temperature and pressure is800 ℃ and 1 atm,respectively.The contour of the characteristic parameters in the catalyst bed was analyzed,such as the species mass fractions,temperature,the heat flux on side wall surface,pressure,fluid density and velocity.The results showed that the calculated values matched well with the experimental values on the conversion of CH4 and the selectivity of products(C_2H_6,C_2H_4,CO,CO_2 and H_2) in the reactor outlet with an error range of±4%.The mass fractions of CH_4 and O_2 decreased from 0.600 and 0.400 at the catalyst bed inlet to 0.445 and0.120 at the outlet,where the mass fractions of C_2H_6,C_2H_4,CO and CO_2 were 0.0245,0.0460,0.0537 and 0.116,respectively.Due to the existence of laminar boundary layer,the mass fraction contours of each species bent upwards in the vicinity of the boundary layer.The volume of OCM reaction was changing with the proceeding of reaction,and the total moles of products were greater than reactants.The flow field in the catalyst bed maintained constant temperature and pressure.The fluid density decreased gradually from 2.28 kg·m^(-3) at the inlet of the catalyst bed to 2.18 kg·m^(-3) at the outlet of the catalyst bed,while the average velocity magnitude increased from 0.108 m·s-1 to 0.120 m·s^(-1).展开更多
基金Supported by the National Science Foundation of China(20736005).ACKNOWLEDGEMENTSThe authors acknowledge the assistance from thestaff in the State Key Laboratories of Chemical Engineering (Tianjin University).
文摘The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are also discussed.
基金funding support from the 973 Program (2014CB440904)the Chinese NSF projects (41490635, 41173023, 41225012)
文摘Equilibrium Si isotope fractionation factors among orthosilicic acid(i.e.,H4 Si O4(aq)), quartz and the adsorption complexes of H4 Si O4(aq)on Fe(III)-oxyhydroxide surface were calculated using the full-electron wave-function quantum chemistry methods [i.e., B3LYP/6-311G(2df,p)]with a new cluster-model-based treatment. Solvation effects were carefully included in our calculations via water-droplet method combined with implicit solvent models(e.g., PCM).The results revealed that, if it is under equilibrium conditions,heavy Si isotopes would be significantly enriched in quartz in comparison to H4 Si O4(aq). However, most of the field observations suggested that quartz would have identical or even depleted d30 Si values compared to that of H4 Si O4(aq). To explain this discrepancy between the equilibrium calculation results and the field observations, the kinetic isotope effect(KIE) associated with the formation of amorphous silica,which usually is the precursor of crystalline quartz, was investigated using quantum chemistry methods. The KIE results showed that amorphous silica would be significantly enriched in light Si isotopes during its formation. Our equilibrium fractionation results, however, matched a special type of quartz(i.e., Herkimer ‘‘diamond'') very well, due to its nearly equilibrated precipitation condition. Opposite to the case of precipitated quartz, a large equilibrium Si isotope fractionation(i.e.,-3.0 %) was found between the absorbed bidentate Si surface complexes(i.e.,2C [ Fe2O2Si(OH)2) and H4 Si O4(aq). This calculated equilibrium Si isotope fractionation factor largely differed from a previous experimental result(ca.-1.08 %). We found that the formation of transient or temporary surface complexes [e.g.,1V [ Fe2OSi(OH)3] may have accounted for the smaller net fractionation observed.With the equilibrium and kinetic Si isotope fractionation factors provided here, the distributions and changes of Si isotope compositions in the Earth's surface systems can be better understood.
基金Project(2005CB623701) supported by the Major State Basic Research and Development Program of ChinaProject(50874118) supported by the National Nature Science Foundation of ChinaProject(2007B52) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘The bulk electronic structure of kaolinite (001) plane was studied with quantum mechanical calculations. The CASTEP parameterization of ultrasoft pseudopotentials without core corrections was used to optimize the structure of kaolinite bulk and slab models. The results show that Fermi energy of kaolinite (001) plane is 3.05 eV, and the band gap is 4.52 eV. The partial density of states (PDOS) of kaolinite (001) plane indicates that Al-O and Si-O bonds on the mineral surface are highly polar. The oxygen atoms of hydroxyl groups in surface layer are capable of forming hydrogen bond with the head group of cationic collectors. The properties of dodecylamine (DDA) cation were also calculated by density function theory (DFT) method at B3LYP/6-31G (d) level for illuminating the flotation processes of kaolinite. Besides the electrostatic attraction, the mechanism between kaolinite and DDA is found to be hydrogen bonds under acidic condition.
基金Supported by the National Natural Science Foundation of China (No. 20476072).
文摘It has long been found that the flow pattern of the liquid phase on distillation tray is of great importance on distillation process performance. But until now, there was very few published work on quantitative investigation of this subject. By combining the computational fluid dynamics (CFD) with the mass transfer equation, a theoretical model is proposed for predicting the details of velocity and concentration distributions as well as the tray efficiency of distillation tray column. Using the proposed model, four different cases corresponding to different assumptions of liquid and vapor flowing condition for a distillation tray column were investigated. In Case I, the distributions of velocity and concentration of the incoming liquid from the downcomer and the uprising vapor from the underneath tray spacing are uniform. In Case n, the distribution of the incoming liquid is non-uniform but the uprising vapor is uniform. In Case HI, the distribution of the incoming liquid is uniform but the uprising vapor is non-uniform. In Case IV, the distributions of both the incoming liquid and the uprising vapor are non-uniform. The details of velocity and concentration distributions on a multiple sieve tray distillation column in four different cases were simulated using the proposed model. It is found that the shape of the simulated concentration profiles of vapor and the liquid is quite different from case to case. The computed results also show that the tray efficiency is highly reduced by the maldistribution of velocity and concentration of the incoming liquid and uprising vapor. The tray efficiency for Case I is higher than Case Ⅱ or Case Ⅲ, and that for Case Ⅳ is the lowest. It also reveals that the accumulated effect of maldistribution becomes more pronounced when the number of column trays increased. The present study demonstrates that the use of computational method to predict the mass transfer efficiency for the tray column, especially for the large one, is feasible.
文摘The C--C bond dissociation energy (BDE) is a very important data in research of hydrocarbon cracking reactions, because it reflects the difficulty level of chemical reactions. But it is very difficult to obtain the C--C bond dissociation energy (BDE) by experiments, so using quantum chemistry calculation such as density functional theory (DFT) to study the C--C bond dissociation energy is a very useful means. The impact of acceptor substituents and donor substituents on the C--C bond length distribution was studied.
基金support from973 Program Fund(No.2014CB440904)Chinese National Science Fund Projects(Nos.41530210,41490635,41403051)
文摘Equilibrium Zn isotope fractionation was inves- tigated using first-principles quantum chemistry methods at the B3LYP/6-311G level. The volume variable cluster model method was used to calculate isotope fractionation factors of sphalerite, smithsonite, calcite, anorthite, for- sterite, and enstatite. The water-droplet method was used to calculate Zn isotope fractionation factors of Zn^2+-bearing aqueous species; their reduced partition function ratio factors decreased in the order [Zn(H2O)6]^2+ 〉 [ZnCl(H2O)5]^ + 〉 [ZnCl2(H2O)4] 〉 [ZnCl3(H20)2]^-〉 ZnCl4]^2-. Gas- eous ZnCl2 was also calculated for vaporization processes. Kinetic isotope fractionation of diffusional processes in a vacuum was directly calculated using formulas provided by Richter and co-workers. Our calculations show that in addition to the kinetic isotope effect of diffusional processes, equilibrium isotope fractionation also contributed nontriv- ially to observed Zn isotope fractionation of vaporization processes. The calculated net Zn isotope fractionation of vaporization processes was 7-7.5‰, with ZnCl2 as the gas- eous species. This matches experimental observations of the range of Zn isotope distribution of lunar samples. Therefore, vaporization processes may be the cause of the large distri- bution of Zn isotope signals found on the Moon. However, we cannot further distinguish the origin of such vaporization processes; it might be due either to igneous rock melting inmeteorite bombardments or to a giant impact event. Fur- thermore, isotope fractionation between Zn-bearing aqueous species and minerals that we have provided helps explain Zn isotope data in the fields of ore deposits and petrology.
基金Supported by the National Basic Research Program of China(2005CB221405)
文摘A three-dimensional geometric model was set up for the oxidative coupling of methane(OCM) fixed bed reactor loaded with Na_3PO_4-Mn/SiO_2/cordierite monolithic catalyst,and an improved Stansch kinetic model was established to calculate the OCM reactions using the computational fluid dynamics method and Fluent software.The simulation conditions were completely the same with the experimental conditions that the volume velocity of the reactant is 80 ml·min^(-1) under standard state,the CH_4/O_2 ratio is 3 and the temperature and pressure is800 ℃ and 1 atm,respectively.The contour of the characteristic parameters in the catalyst bed was analyzed,such as the species mass fractions,temperature,the heat flux on side wall surface,pressure,fluid density and velocity.The results showed that the calculated values matched well with the experimental values on the conversion of CH4 and the selectivity of products(C_2H_6,C_2H_4,CO,CO_2 and H_2) in the reactor outlet with an error range of±4%.The mass fractions of CH_4 and O_2 decreased from 0.600 and 0.400 at the catalyst bed inlet to 0.445 and0.120 at the outlet,where the mass fractions of C_2H_6,C_2H_4,CO and CO_2 were 0.0245,0.0460,0.0537 and 0.116,respectively.Due to the existence of laminar boundary layer,the mass fraction contours of each species bent upwards in the vicinity of the boundary layer.The volume of OCM reaction was changing with the proceeding of reaction,and the total moles of products were greater than reactants.The flow field in the catalyst bed maintained constant temperature and pressure.The fluid density decreased gradually from 2.28 kg·m^(-3) at the inlet of the catalyst bed to 2.18 kg·m^(-3) at the outlet of the catalyst bed,while the average velocity magnitude increased from 0.108 m·s-1 to 0.120 m·s^(-1).