A cryptosystem with non-commutative platform groups based on conjugator search problem was recently introduced at Neural Computing and Applications 2016. Its versatility was illustrated by building a public-key encryp...A cryptosystem with non-commutative platform groups based on conjugator search problem was recently introduced at Neural Computing and Applications 2016. Its versatility was illustrated by building a public-key encryption scheme. We propose an algebraic key-recovery attack in the polynomial computational complexity. Furthermore, we peel off the encryption and decryption process and propose attack methods for solving the conjugator search problem over the given non-abelian group. Finally, we provide corresponding practical attack examples to illustrate the attack methods in our cryptanalysis, and provide some improved suggestions.展开更多
Feedforward symbol timing recovery techniques are particularly important for initial acquisition in burst modems. However, these techniques either have large calculation burden or sensitive to frequency offsets. In th...Feedforward symbol timing recovery techniques are particularly important for initial acquisition in burst modems. However, these techniques either have large calculation burden or sensitive to frequency offsets. In this paper, we proposed an efficient symbol timing recovery algorithm of MPSK signals named OMQ(Ordered Maximum power using Quadratic approximation partially) algorithm which is based on the Quadratic Approximation(QA) algorithm. We used ordered statistic sorting method to reduce the computational complexity further, meanwhile maximum mean power principle was used to decrease frequency offset sensitivity. The proposed algorithm adopts estimation-down sampling structure which is suitable for small packet size transmission. The results show that, while comparing with the QA algorithm, the computational complexity is reduced by 75% at most when 8 samples per symbol are used. The proposed algorithm shows better performance in terms of the jitter variance and sensitivity to frequency offsets.展开更多
The interference alignment (IA) algorithm based on FDPM subspace tracking (FDPM-ST IA) is proposed for MIMO cognitive network (CRN) with multiple primary users in this paper. The feasibility conditions of FDPM-S...The interference alignment (IA) algorithm based on FDPM subspace tracking (FDPM-ST IA) is proposed for MIMO cognitive network (CRN) with multiple primary users in this paper. The feasibility conditions of FDPM-ST IA is also got. Futherly, IA scheme of secondary network and IA scheme of primary network are given respectively without assuming a priori knowledge of interference covariance matrices. Moreover, the paper analyses the computational complexity of FDPM-ST IA. Simulation results and theoretical calculations show that the proposed algorithm can achieve higher sum rate with lower computational complexity.展开更多
Based on an orthogonal frequency division multiplexing(OFDM) training symbol with L identical parts, a novel carrier frequency offset (CFO) estimator is proposed for OFDM systems. The CFO is estimated in two steps, fi...Based on an orthogonal frequency division multiplexing(OFDM) training symbol with L identical parts, a novel carrier frequency offset (CFO) estimator is proposed for OFDM systems. The CFO is estimated in two steps, fine estimate and coarse estimate. In the first step, the fine estimation is performed based on the principle of minimum variance. However, the fine estimation has ambiguity since its estimate range is limited. In the second step, the coarse estimation is obtained, which results in a larger estimate range but less precision. Using the coarse estimation, the ambiguity of fine estimation is resolved. To fully use the correlation among L identical parts, the fine estimation resolved the ambiguity and the coarse estimation are optimally combined to obtain the final estimation. Furthermore, the estimation variance of the proposed method is derived. Simulation results demonstrate that the novel two-step estimator outperforms the conventional two-step estimator in terms of estimate performance and computational complexity.展开更多
The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crud...The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crude oil mixing in large-diameter storage tanks. To keep the efficiency of parallel computation of LBM, the RANS model should also be explicitly solved; whereas to keep the numerical stability the implicit method should be better for PANS model. This article explores the numerical stability of explicit methods in 2D cases on one hand, and on the other hand how to accelerate the computation of the coupled model of LBM and an implicitly solved RANS model in 3D cases. To ensure the numerical stability and meanwhile avoid the use of empirical artificial lim- itations on turbulent quantities in 2D cases, we investigated the impacts of collision models in LBM (LBGK, MRT) and the numerical schemes for convection terms (WENO, TVD) and production terms (FDM, NEQM) in an explic- itly solved standard k-e model. The combination of MRT and TVD or MRT and NEQM can be screened out for the 2D simulation of backward-facing step flow even at Re = 107. This scheme combination, however, may still not guarantee the numerical stability in 3D cases and hence much finer grids are required, which is not suitable for the simulation of industrial-scale processes.Then we proposed a new method to accelerate the coupled model of LBM with RANS (implicitly solved). When implemented on multiple GPUs, this new method can achieve 13.5-fold accelera- tion relative to the original coupled model and 40-fold acceleration compared to the traditional CFD simulation based on Finite Volume (FV) method accelerated by multiple CPUs. This study provides the basis for the transient flow simulation of larger spatial and temporal scales in industrial applications with LBM-RANS methods.展开更多
In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp...In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp signals with opposite chirp rates are used as the training signal, the received training signal with timing and frequency offset is transformed by FrFT and the two peaks representing two chirps in FrFT domain are detected, then the position coordinates of the two peaks are precisely corrected and substituted into an equation group to calculate timing and frequency offset simultaneously. This method only needs one FrFT calculation to implement synchronization, the computational complexity is equal to that of FFT and less than that of correlation or maximum likelihood calculation of existing methods, and estimation range of frequency offset is Large, greater than half the signal bandwidth, while the simulation results show that even at low SNR it can accurately estimate timing and frequency offset and the estimation error is less than that of existing methods.展开更多
This paper investigates the blind algorithm for channel estimation of Orthogonal Frequency Division Multiplexing-Multiple Input Multiple Output (OFDM-MIMO) wireless communication system using the subspace decompositio...This paper investigates the blind algorithm for channel estimation of Orthogonal Frequency Division Multiplexing-Multiple Input Multiple Output (OFDM-MIMO) wireless communication system using the subspace decomposition of the channel received complex baseband signals and proposes a new two-stage blind algorithm. Exploited the second-order cyclostationarity inherent in OFDM with cyclic prefix and the characteristics of the phased antenna, the practical HIPERLAN/2 standard based OFDM-MIMO simulator is established with the sufficient consideration of statistical correlations between the multiple antenna channels under wireless wideband multipath fading environment, and a new two-stage blind algorithm is formulated using rank reduced subspace channel matrix approximation and adaptive Constant Modulus (CM)criterion. Simulation results confirm the theoretical analysis and illustrate that the proposed algorithm is capable of tracking matrix channel variations with fast convergence rate and improving acceptable overall system performance over various common wireless and mobile communication links.展开更多
This paper presents a novel carrier frequency offset estimation (CFO) algorithm for orthogonal frequency division multiplexing (OFDM)-based Wireless Local Area Networks (WLANs). Compared with previous approaches, this...This paper presents a novel carrier frequency offset estimation (CFO) algorithm for orthogonal frequency division multiplexing (OFDM)-based Wireless Local Area Networks (WLANs). Compared with previous approaches, this paper extends the whole frequency offset acquisition range by embedding a synthetic algorithm according to the preamble structure of WLANs symbols. The numerical results presented support the effectiveness of this algorithm by which the estimation error of the whole carrier frequency offset in the WLANs is effectively decreased.展开更多
A channel estimator used in sparse muhipath fading channel for orthogonal frequency division multiplexing (OFDM) system is proposed. The dimension of signal subspace can be reduced to improve the performance of chan...A channel estimator used in sparse muhipath fading channel for orthogonal frequency division multiplexing (OFDM) system is proposed. The dimension of signal subspace can be reduced to improve the performance of channel estimation. The simplified version of original subspace fitting algorithm is employed to derive the sparse multipaths. In order to overcome the difficulty of termination condition, we consider it as a model identification problem and the set of nonzero paths is found under the generalized Akaike information criterion (GAIC). The computational complexity can be kept very low under proper training design. Our proposed method is superior to other related schemes due to combining the procedure of selecting the most probable taps with GAIC model selection. Simulation in hilly terrain (HT) channel shows that the proposed method has an outstanding performance.展开更多
The higher peak-to-average power ratio(PAPR) is a major shortcoming of coherent optical orthogonal frequency division multiplexing(CO-OFDM) systems. Selective mapping(SLM) technology can effectively reduce the probabi...The higher peak-to-average power ratio(PAPR) is a major shortcoming of coherent optical orthogonal frequency division multiplexing(CO-OFDM) systems. Selective mapping(SLM) technology can effectively reduce the probability of high PAPR, but it has higher computational complexity, and requires additional bandwidth to transmit the side information, which will affect the transmission efficiency of the system. In response to these shortcomings, a novel improved SLM(NI-SLM) scheme with low complexity and without side information is proposed. Simulation results show that the proposed scheme can exponentially reduce the computational complexity, and the bit error rate(BER) performance can greatly approach the original signal. What's more, it shows the better PAPR reduction performance.展开更多
The problem of computing the greatest common divisor(GCD) of multivariate polynomials, as one of the most important tasks of computer algebra and symbolic computation in more general scope, has been studied extensiv...The problem of computing the greatest common divisor(GCD) of multivariate polynomials, as one of the most important tasks of computer algebra and symbolic computation in more general scope, has been studied extensively since the beginning of the interdisciplinary of mathematics with computer science. For many real applications such as digital image restoration and enhancement,robust control theory of nonlinear systems, L1-norm convex optimization in compressed sensing techniques, as well as algebraic decoding of Reed-Solomon and BCH codes, the concept of sparse GCD plays a core role where only the greatest common divisors with much fewer terms than the original polynomials are of interest due to the nature of problems or data structures. This paper presents two methods via multivariate polynomial interpolation which are based on the variation of Zippel's method and Ben-Or/Tiwari algorithm, respectively. To reduce computational complexity, probabilistic techniques and randomization are employed to deal with univariate GCD computation and univariate polynomial interpolation. The authors demonstrate the practical performance of our algorithms on a significant body of examples. The implemented experiment illustrates that our algorithms are efficient for a quite wide range of input.展开更多
基金supported by the State Key Program of National Natural Science of China(Grant Nos. 61332019)the National Natural Science Foundation of China (61572303)+7 种基金National Key Research and Development Program of China ( 2017YFB0802003 , 2017YFB0802004)National Cryptography Development Fund during the 13th Five-year Plan Period (MMJJ20170216)the Foundation of State Key Laboratory of Information Security (2017-MS-03)the Fundamental Research Funds for the Central Universities(GK201702004,GK201603084)Major State Basic Research Development Program of China (973 Program) (No.2014CB340600)National High-tech R&D Program of China(2015AA016002, 2015AA016004)Natural Science Foundation of He Bei Province (No. F2017201199)Science and technology research project of Hebei higher education (No. QN2017020)
文摘A cryptosystem with non-commutative platform groups based on conjugator search problem was recently introduced at Neural Computing and Applications 2016. Its versatility was illustrated by building a public-key encryption scheme. We propose an algebraic key-recovery attack in the polynomial computational complexity. Furthermore, we peel off the encryption and decryption process and propose attack methods for solving the conjugator search problem over the given non-abelian group. Finally, we provide corresponding practical attack examples to illustrate the attack methods in our cryptanalysis, and provide some improved suggestions.
基金supported by the National Natural Science Foundation of China(NSFC.NO.61303253)
文摘Feedforward symbol timing recovery techniques are particularly important for initial acquisition in burst modems. However, these techniques either have large calculation burden or sensitive to frequency offsets. In this paper, we proposed an efficient symbol timing recovery algorithm of MPSK signals named OMQ(Ordered Maximum power using Quadratic approximation partially) algorithm which is based on the Quadratic Approximation(QA) algorithm. We used ordered statistic sorting method to reduce the computational complexity further, meanwhile maximum mean power principle was used to decrease frequency offset sensitivity. The proposed algorithm adopts estimation-down sampling structure which is suitable for small packet size transmission. The results show that, while comparing with the QA algorithm, the computational complexity is reduced by 75% at most when 8 samples per symbol are used. The proposed algorithm shows better performance in terms of the jitter variance and sensitivity to frequency offsets.
基金the National Nature Science Foundation of China under Grant No.61271259 and 61301123,the Chongqing Nature Science Foundation under Grant No.CTSC2011jjA40006,and the Research Project of Chongqing Education Commission under Grant No.KJ120501 and KJ120502
文摘The interference alignment (IA) algorithm based on FDPM subspace tracking (FDPM-ST IA) is proposed for MIMO cognitive network (CRN) with multiple primary users in this paper. The feasibility conditions of FDPM-ST IA is also got. Futherly, IA scheme of secondary network and IA scheme of primary network are given respectively without assuming a priori knowledge of interference covariance matrices. Moreover, the paper analyses the computational complexity of FDPM-ST IA. Simulation results and theoretical calculations show that the proposed algorithm can achieve higher sum rate with lower computational complexity.
基金Foundation of Donghua University,China (No.104100044027)
文摘Based on an orthogonal frequency division multiplexing(OFDM) training symbol with L identical parts, a novel carrier frequency offset (CFO) estimator is proposed for OFDM systems. The CFO is estimated in two steps, fine estimate and coarse estimate. In the first step, the fine estimation is performed based on the principle of minimum variance. However, the fine estimation has ambiguity since its estimate range is limited. In the second step, the coarse estimation is obtained, which results in a larger estimate range but less precision. Using the coarse estimation, the ambiguity of fine estimation is resolved. To fully use the correlation among L identical parts, the fine estimation resolved the ambiguity and the coarse estimation are optimally combined to obtain the final estimation. Furthermore, the estimation variance of the proposed method is derived. Simulation results demonstrate that the novel two-step estimator outperforms the conventional two-step estimator in terms of estimate performance and computational complexity.
基金Supported by the National Key Research and Development Program of China(2017YFB0602500)National Natural Science Foundation of China(91634203 and91434121)Chinese Academy of Sciences(122111KYSB20150003)
文摘The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crude oil mixing in large-diameter storage tanks. To keep the efficiency of parallel computation of LBM, the RANS model should also be explicitly solved; whereas to keep the numerical stability the implicit method should be better for PANS model. This article explores the numerical stability of explicit methods in 2D cases on one hand, and on the other hand how to accelerate the computation of the coupled model of LBM and an implicitly solved RANS model in 3D cases. To ensure the numerical stability and meanwhile avoid the use of empirical artificial lim- itations on turbulent quantities in 2D cases, we investigated the impacts of collision models in LBM (LBGK, MRT) and the numerical schemes for convection terms (WENO, TVD) and production terms (FDM, NEQM) in an explic- itly solved standard k-e model. The combination of MRT and TVD or MRT and NEQM can be screened out for the 2D simulation of backward-facing step flow even at Re = 107. This scheme combination, however, may still not guarantee the numerical stability in 3D cases and hence much finer grids are required, which is not suitable for the simulation of industrial-scale processes.Then we proposed a new method to accelerate the coupled model of LBM with RANS (implicitly solved). When implemented on multiple GPUs, this new method can achieve 13.5-fold accelera- tion relative to the original coupled model and 40-fold acceleration compared to the traditional CFD simulation based on Finite Volume (FV) method accelerated by multiple CPUs. This study provides the basis for the transient flow simulation of larger spatial and temporal scales in industrial applications with LBM-RANS methods.
文摘In this paper a joint timing and frequency synchronization method based on Fractional Fourier Transform (FIFT) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) system. The combination of two chirp signals with opposite chirp rates are used as the training signal, the received training signal with timing and frequency offset is transformed by FrFT and the two peaks representing two chirps in FrFT domain are detected, then the position coordinates of the two peaks are precisely corrected and substituted into an equation group to calculate timing and frequency offset simultaneously. This method only needs one FrFT calculation to implement synchronization, the computational complexity is equal to that of FFT and less than that of correlation or maximum likelihood calculation of existing methods, and estimation range of frequency offset is Large, greater than half the signal bandwidth, while the simulation results show that even at low SNR it can accurately estimate timing and frequency offset and the estimation error is less than that of existing methods.
文摘This paper investigates the blind algorithm for channel estimation of Orthogonal Frequency Division Multiplexing-Multiple Input Multiple Output (OFDM-MIMO) wireless communication system using the subspace decomposition of the channel received complex baseband signals and proposes a new two-stage blind algorithm. Exploited the second-order cyclostationarity inherent in OFDM with cyclic prefix and the characteristics of the phased antenna, the practical HIPERLAN/2 standard based OFDM-MIMO simulator is established with the sufficient consideration of statistical correlations between the multiple antenna channels under wireless wideband multipath fading environment, and a new two-stage blind algorithm is formulated using rank reduced subspace channel matrix approximation and adaptive Constant Modulus (CM)criterion. Simulation results confirm the theoretical analysis and illustrate that the proposed algorithm is capable of tracking matrix channel variations with fast convergence rate and improving acceptable overall system performance over various common wireless and mobile communication links.
基金Project supported by the National Natural Science Foundation of China (No. 2004012F33AA), and Education Foundation of Zhe- jiang Education Department (No. 20040125-66), China
文摘This paper presents a novel carrier frequency offset estimation (CFO) algorithm for orthogonal frequency division multiplexing (OFDM)-based Wireless Local Area Networks (WLANs). Compared with previous approaches, this paper extends the whole frequency offset acquisition range by embedding a synthetic algorithm according to the preamble structure of WLANs symbols. The numerical results presented support the effectiveness of this algorithm by which the estimation error of the whole carrier frequency offset in the WLANs is effectively decreased.
基金Supported by the Starting Fund for Science Research of NJUST (AB41947)the Open Research Fund of National Mobile Communications Research Laboratory (N200609)Science Research Developing Fund of NJUST (XKF07023)
文摘A channel estimator used in sparse muhipath fading channel for orthogonal frequency division multiplexing (OFDM) system is proposed. The dimension of signal subspace can be reduced to improve the performance of channel estimation. The simplified version of original subspace fitting algorithm is employed to derive the sparse multipaths. In order to overcome the difficulty of termination condition, we consider it as a model identification problem and the set of nonzero paths is found under the generalized Akaike information criterion (GAIC). The computational complexity can be kept very low under proper training design. Our proposed method is superior to other related schemes due to combining the procedure of selecting the most probable taps with GAIC model selection. Simulation in hilly terrain (HT) channel shows that the proposed method has an outstanding performance.
基金supported by the National Natural Science Foundation of China(Nos.61472464,61671091 and 61471075)the Natural Science Foundation of Chongqing Science and Technology Commission(No.cstc2015jcyj A0554)
文摘The higher peak-to-average power ratio(PAPR) is a major shortcoming of coherent optical orthogonal frequency division multiplexing(CO-OFDM) systems. Selective mapping(SLM) technology can effectively reduce the probability of high PAPR, but it has higher computational complexity, and requires additional bandwidth to transmit the side information, which will affect the transmission efficiency of the system. In response to these shortcomings, a novel improved SLM(NI-SLM) scheme with low complexity and without side information is proposed. Simulation results show that the proposed scheme can exponentially reduce the computational complexity, and the bit error rate(BER) performance can greatly approach the original signal. What's more, it shows the better PAPR reduction performance.
基金supported by the National Natural Science Foundation of China under Grant Nos.11471209,11561015,and 11301066Guangxi Key Laboratory of Cryptography and Information Security under Grant No.GCIS201615
文摘The problem of computing the greatest common divisor(GCD) of multivariate polynomials, as one of the most important tasks of computer algebra and symbolic computation in more general scope, has been studied extensively since the beginning of the interdisciplinary of mathematics with computer science. For many real applications such as digital image restoration and enhancement,robust control theory of nonlinear systems, L1-norm convex optimization in compressed sensing techniques, as well as algebraic decoding of Reed-Solomon and BCH codes, the concept of sparse GCD plays a core role where only the greatest common divisors with much fewer terms than the original polynomials are of interest due to the nature of problems or data structures. This paper presents two methods via multivariate polynomial interpolation which are based on the variation of Zippel's method and Ben-Or/Tiwari algorithm, respectively. To reduce computational complexity, probabilistic techniques and randomization are employed to deal with univariate GCD computation and univariate polynomial interpolation. The authors demonstrate the practical performance of our algorithms on a significant body of examples. The implemented experiment illustrates that our algorithms are efficient for a quite wide range of input.