The paper specifies an unambiguous basic relationship between the published results of ab initio calculations of lattice energies, E L,and heats of sublimation, ΔH s,of individual energetic materials. In this relatio...The paper specifies an unambiguous basic relationship between the published results of ab initio calculations of lattice energies, E L,and heats of sublimation, ΔH s,of individual energetic materials. In this relationship,the ΔH s value has been replaced by heats of fusion, ΔH m,tr . Thereby its unambiguity has been lost,and the similarity of details of molecular structure begins to be of decisive importance. The resulting partial relationships,together with the basic relationship,have been used for prediction of ΔH s,and ΔH m,tr values of technically attractive polynitro compounds.展开更多
The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is m...The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is modified for our superlattices:First,apart from the former scheme,for the fixed electron density n(z),the eigenvalues and eigenfunctions are calculated,and then by using those,reconstruct the new n(z).Also,for every k z,we apply the CG schemes independently.The calculated energy difference between two minibands,and Fermi energy are in good agreement with the experimental data.展开更多
The structural and thermodynamic properties of TiAI intermetallics under high pressure have been investigated by ab initio plane-wave pseudopotential density functional theory method. It is found that the ratio of lat...The structural and thermodynamic properties of TiAI intermetallics under high pressure have been investigated by ab initio plane-wave pseudopotential density functional theory method. It is found that the ratio of lattice parameter c to a keeps almost constant with a value of 1.02 under the pressure from 0 to 20 GPa, which agrees well with the experimental results. With the pressure increasing from 20 to 45 GPa the values of c/a decrease almost linearly from 1.02 to 0.99. These calculated results indicate under low pressure the variation rate for a-axis is almost the same to that for c-axis, but under higher pressure the variation for a-axis is smaller than along e-axis. Through the quasi-harmonic Debye model, the equation of state (EOS) of TiAI intermetallies, as well as the thermal expansion and heat capacity at various pressures and temperatures are also studied.展开更多
In the theory calculation of lattice vibration, one acoustic and three optical branches were found to compose the phonon vibrating spectrum.Some isolated modes with frequencies lying outside the continuum branches wil...In the theory calculation of lattice vibration, one acoustic and three optical branches were found to compose the phonon vibrating spectrum.Some isolated modes with frequencies lying outside the continuum branches will arise under the defect states.These local model results in the sharp peaks in the infrared absorption and Raman spectra.From calculation of the infrared absorption,the local mode with the infrared activity is obtained in the infrared absorption spectrum of MX compounds.展开更多
Lattice-valued logic plays an important role in multi-valued logic systems. A lattice valued logic system lp(X) is constructed. The syntax of lp(X) is discussed. It may be more convenient in application and study espe...Lattice-valued logic plays an important role in multi-valued logic systems. A lattice valued logic system lp(X) is constructed. The syntax of lp(X) is discussed. It may be more convenient in application and study especially in the case that the valuation domain is finite lattice implication algebra.展开更多
By considering (2+1)-dimensional non-isospectral discrete zero curvature equation, the (2+1)-dimensional non-isospectral Toda lattice hierarchy is constructed in this article. It follows that some reductions of ...By considering (2+1)-dimensional non-isospectral discrete zero curvature equation, the (2+1)-dimensional non-isospectral Toda lattice hierarchy is constructed in this article. It follows that some reductions of the (2+1)- dimensional Toda lattice hierarchy are given. Finally, the (2+1)-dimensional integrable coupling system of the Toda lattice hierarchy is obtained through enlarging spectral problem.展开更多
The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is m...The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is modified for our superlattices:First,apart from the former scheme,for the fixed electron density n(z),the eigenvalues and eigenfunctions are calculated,and then by using those,reconstruct the new n(z).Also,for every k z,we apply the CG schemes independently.The calculated energy difference between two minibands,and Fermi energy are in good agreement with the experimental data.展开更多
The system energy of H atom occupying different positions in Cr2O3 crystal lattice is calculated by adopting the first-principles calculation method based on density functional theory in this paper. The results indica...The system energy of H atom occupying different positions in Cr2O3 crystal lattice is calculated by adopting the first-principles calculation method based on density functional theory in this paper. The results indicate that the most stable position of H atom in Cr2O3 crystal lattice locates at the bilateral positions of the center of the unoccupied O octahedral interstice. The reason resulting in this situation is analyzed by comparing the change of Cr2O3 lattice distortion and density of states in Cr2O3_H system when H atom locates at different positions in octahedral interstice. The diffusion activation energy of H atom is 0.73 eV,which is determined by seeking the diffusion path and transition state of H atom in Cr2O3 crystal lattice. The effective attempt frequency of H atom in Cr2O3 crystal lattice is also calculated by using molecular dynamics. Combining with diffusion activation energy data,the diffusion coefficient of H atom in Cr2O3 crystal is determined.展开更多
This paper presents a new continuum thermal stress theory for crystals based on interatomic potentials.The effect of finite temperature is taken into account via a harmonic model.An EAM potential for copper is adopted...This paper presents a new continuum thermal stress theory for crystals based on interatomic potentials.The effect of finite temperature is taken into account via a harmonic model.An EAM potential for copper is adopted in this paper and verified by computing the effect of the temperature on the specific heat,coefficient of thermal expansion and lattice constant.Then we calculate the elastic constants of copper at finite temperature.The calculation results are in good agreement with experimental data.The thermal stress theory is applied to an anisotropic crystal graphite,in which the Brenner potential is employed.Temperature dependence of the thermodynamic properties,lattice constants and thermal strains for graphite is calculated.The calculation results are also in good agreement with experimental data.展开更多
The geometrical matching/mismatching of lattices overlapped in 1, 2 and 3 dimensions have been analyzed systematically by variation of lattice misfit in a large range, far beyond the limits for semicoherent interfaces...The geometrical matching/mismatching of lattices overlapped in 1, 2 and 3 dimensions have been analyzed systematically by variation of lattice misfit in a large range, far beyond the limits for semicoherent interfaces. In order to evaluate the degree of matching, the density of good matching site (GMS) between two lattices is calculated. The analysis shows that the GMS density remains approximately constant, irrespectively to the degree of lattice misfit. This constant, defined as the average GMS density, decreases exponentially with the increasing dimension of misfit. Typically, for 6 = 15%, the average GMS densities are approximately 30%, 7%, and 1.4% for 1D, 2D, and 3D lattice misfits, respectively. The GMS density deviates significantly if a CSL of small X can be defined. The relationship between the GMS distribution and O-lattice is investigated. It indicates that an abrupt increase in the GMS density in an interface parallel to a principal O-lattice plane is equivalent to a reduction of dimension of misfit. This shows the agreement between the selections of principal O-lattice planes as candidates of the preferred interfaces and the condition that interfaces with high GMS density are preferred.展开更多
By means of first-principles calculations,we have investigated the effects of rare earth elements (REEs) on the structures and mechanical properties of magnesium.The lattice parameters,elastic constants,bulk moduli,sh...By means of first-principles calculations,we have investigated the effects of rare earth elements (REEs) on the structures and mechanical properties of magnesium.The lattice parameters,elastic constants,bulk moduli,shear moduli,Young's moduli and anisotropic parameter of these solid solutions have been calculated and analyzed.The nearest-neighbor distance between Mg and the REEs is also analyzed to explore the correlation with the bulk moduli.The results show that the 4f-electrons and atomic radii play an important role in the strengthening process.The anomalies of the lattice parameters and mechanical properties at Eu and Yb are due to the half-filled and full-filled 4f-electron orbital states.Finally,the increase of directional bonding character near the alloying elements may account for the anisotropy and brittleness of these magnesium alloys.展开更多
We calculated numerically the localization length of one-dimensional Anderson model with correlated diagonal disorder. For zero energy point in the weak disorder limit, we showed that the localization length changes c...We calculated numerically the localization length of one-dimensional Anderson model with correlated diagonal disorder. For zero energy point in the weak disorder limit, we showed that the localization length changes continuously as the correlation of the disorder increases. We found that higher order terms of the correlation must be included into the current perturbation result in order to give the correct localization length, arid to connect smoothly the anomaly at zero correlation with the perturbation result for large correlation.展开更多
Electron energy levels and positron states have been calculated for cadmium and zinc chalcogenide compounds within the pseudo-potential approach and the independent particle model.Furthermore,the present contribution ...Electron energy levels and positron states have been calculated for cadmium and zinc chalcogenide compounds within the pseudo-potential approach and the independent particle model.Furthermore,the present contribution deals with the electron and positron chemical potentials allowing the calculation of the positron affinity to different materials of interest and hetero-structures formed by these materials.Besides,we here determine the positron diffusion constant by means of the positron deformation potential.An attempt has been made to scale positron affinity and diffusion constant with the lattice constant and the band gap energy,respectively.Such scaling is found to be not possible.The information gathered by the present study is of prime importance for a better understanding of positron trapping at interfaces and precipitates and should be useful in slow positron beam experiments.展开更多
文摘The paper specifies an unambiguous basic relationship between the published results of ab initio calculations of lattice energies, E L,and heats of sublimation, ΔH s,of individual energetic materials. In this relationship,the ΔH s value has been replaced by heats of fusion, ΔH m,tr . Thereby its unambiguity has been lost,and the similarity of details of molecular structure begins to be of decisive importance. The resulting partial relationships,together with the basic relationship,have been used for prediction of ΔH s,and ΔH m,tr values of technically attractive polynitro compounds.
基金Supported by National Natural Science Foundation of China(No.50 0 72 0 1 5 and No.5980 1 0 0 6) and Tianjin Youth Foundation o
文摘The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is modified for our superlattices:First,apart from the former scheme,for the fixed electron density n(z),the eigenvalues and eigenfunctions are calculated,and then by using those,reconstruct the new n(z).Also,for every k z,we apply the CG schemes independently.The calculated energy difference between two minibands,and Fermi energy are in good agreement with the experimental data.
基金Support from Ph. D. Program Foundation (B2009-59)the National Science Foundations of China under Grant No. 50802024+1 种基金Henan Educational Committee under Grant No. 2011A140007Young Key Teacher by Henan Polytechnic University
文摘The structural and thermodynamic properties of TiAI intermetallics under high pressure have been investigated by ab initio plane-wave pseudopotential density functional theory method. It is found that the ratio of lattice parameter c to a keeps almost constant with a value of 1.02 under the pressure from 0 to 20 GPa, which agrees well with the experimental results. With the pressure increasing from 20 to 45 GPa the values of c/a decrease almost linearly from 1.02 to 0.99. These calculated results indicate under low pressure the variation rate for a-axis is almost the same to that for c-axis, but under higher pressure the variation for a-axis is smaller than along e-axis. Through the quasi-harmonic Debye model, the equation of state (EOS) of TiAI intermetallies, as well as the thermal expansion and heat capacity at various pressures and temperatures are also studied.
文摘In the theory calculation of lattice vibration, one acoustic and three optical branches were found to compose the phonon vibrating spectrum.Some isolated modes with frequencies lying outside the continuum branches will arise under the defect states.These local model results in the sharp peaks in the infrared absorption and Raman spectra.From calculation of the infrared absorption,the local mode with the infrared activity is obtained in the infrared absorption spectrum of MX compounds.
基金The National Science Fund of China(No.60074014,60474022)The Project Fund of Zhejiang Science and Technology Depart ment,China(No.2005C31005)
文摘Lattice-valued logic plays an important role in multi-valued logic systems. A lattice valued logic system lp(X) is constructed. The syntax of lp(X) is discussed. It may be more convenient in application and study especially in the case that the valuation domain is finite lattice implication algebra.
基金supported by the State Key Basic Research Development Program of China under Grant No.2004CB318000
文摘By considering (2+1)-dimensional non-isospectral discrete zero curvature equation, the (2+1)-dimensional non-isospectral Toda lattice hierarchy is constructed in this article. It follows that some reductions of the (2+1)- dimensional Toda lattice hierarchy are given. Finally, the (2+1)-dimensional integrable coupling system of the Toda lattice hierarchy is obtained through enlarging spectral problem.
基金Supported by National Natural Science Foundation of China(No.50 0 72 0 1 5 and No.5980 1 0 0 6) and Tianjin Youth Foundation o
文摘The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is modified for our superlattices:First,apart from the former scheme,for the fixed electron density n(z),the eigenvalues and eigenfunctions are calculated,and then by using those,reconstruct the new n(z).Also,for every k z,we apply the CG schemes independently.The calculated energy difference between two minibands,and Fermi energy are in good agreement with the experimental data.
基金supported by the National Natural Science Foundation of China (Grant Nos.50771104,50871122)
文摘The system energy of H atom occupying different positions in Cr2O3 crystal lattice is calculated by adopting the first-principles calculation method based on density functional theory in this paper. The results indicate that the most stable position of H atom in Cr2O3 crystal lattice locates at the bilateral positions of the center of the unoccupied O octahedral interstice. The reason resulting in this situation is analyzed by comparing the change of Cr2O3 lattice distortion and density of states in Cr2O3_H system when H atom locates at different positions in octahedral interstice. The diffusion activation energy of H atom is 0.73 eV,which is determined by seeking the diffusion path and transition state of H atom in Cr2O3 crystal lattice. The effective attempt frequency of H atom in Cr2O3 crystal lattice is also calculated by using molecular dynamics. Combining with diffusion activation energy data,the diffusion coefficient of H atom in Cr2O3 crystal is determined.
基金supported by the National Natural Science Foundation of China(Grant Nos.11021262,11172303,11132011)National Basic Research Program of China(Grant No.2012CB937500)
文摘This paper presents a new continuum thermal stress theory for crystals based on interatomic potentials.The effect of finite temperature is taken into account via a harmonic model.An EAM potential for copper is adopted in this paper and verified by computing the effect of the temperature on the specific heat,coefficient of thermal expansion and lattice constant.Then we calculate the elastic constants of copper at finite temperature.The calculation results are in good agreement with experimental data.The thermal stress theory is applied to an anisotropic crystal graphite,in which the Brenner potential is employed.Temperature dependence of the thermodynamic properties,lattice constants and thermal strains for graphite is calculated.The calculation results are also in good agreement with experimental data.
基金supported from the National Natural Science Foundation of China (Grant No. 1171088)the National Basic Research Program of China (Grant No. 12CB619403) from Chinese Ministry of Science and Technology
文摘The geometrical matching/mismatching of lattices overlapped in 1, 2 and 3 dimensions have been analyzed systematically by variation of lattice misfit in a large range, far beyond the limits for semicoherent interfaces. In order to evaluate the degree of matching, the density of good matching site (GMS) between two lattices is calculated. The analysis shows that the GMS density remains approximately constant, irrespectively to the degree of lattice misfit. This constant, defined as the average GMS density, decreases exponentially with the increasing dimension of misfit. Typically, for 6 = 15%, the average GMS densities are approximately 30%, 7%, and 1.4% for 1D, 2D, and 3D lattice misfits, respectively. The GMS density deviates significantly if a CSL of small X can be defined. The relationship between the GMS distribution and O-lattice is investigated. It indicates that an abrupt increase in the GMS density in an interface parallel to a principal O-lattice plane is equivalent to a reduction of dimension of misfit. This shows the agreement between the selections of principal O-lattice planes as candidates of the preferred interfaces and the condition that interfaces with high GMS density are preferred.
基金supported by the National Basic Research Program of China(2007CB613704)
文摘By means of first-principles calculations,we have investigated the effects of rare earth elements (REEs) on the structures and mechanical properties of magnesium.The lattice parameters,elastic constants,bulk moduli,shear moduli,Young's moduli and anisotropic parameter of these solid solutions have been calculated and analyzed.The nearest-neighbor distance between Mg and the REEs is also analyzed to explore the correlation with the bulk moduli.The results show that the 4f-electrons and atomic radii play an important role in the strengthening process.The anomalies of the lattice parameters and mechanical properties at Eu and Yb are due to the half-filled and full-filled 4f-electron orbital states.Finally,the increase of directional bonding character near the alloying elements may account for the anisotropy and brittleness of these magnesium alloys.
基金Supported by National Natural Science Foundation of China under Grant No.10374093the Knowledge Innovation Project of Chinese Academy of Sciences
文摘We calculated numerically the localization length of one-dimensional Anderson model with correlated diagonal disorder. For zero energy point in the weak disorder limit, we showed that the localization length changes continuously as the correlation of the disorder increases. We found that higher order terms of the correlation must be included into the current perturbation result in order to give the correct localization length, arid to connect smoothly the anomaly at zero correlation with the perturbation result for large correlation.
文摘Electron energy levels and positron states have been calculated for cadmium and zinc chalcogenide compounds within the pseudo-potential approach and the independent particle model.Furthermore,the present contribution deals with the electron and positron chemical potentials allowing the calculation of the positron affinity to different materials of interest and hetero-structures formed by these materials.Besides,we here determine the positron diffusion constant by means of the positron deformation potential.An attempt has been made to scale positron affinity and diffusion constant with the lattice constant and the band gap energy,respectively.Such scaling is found to be not possible.The information gathered by the present study is of prime importance for a better understanding of positron trapping at interfaces and precipitates and should be useful in slow positron beam experiments.