本研究调查了计算机辅助反馈策略对大学技术教育课程的影响。具体来说,研究探讨了计算机辅助反馈策略"对错反馈"(Knowledge of Responses,简称KCOR)和"正确答案反馈"(Knowledge of Correct Re-sponses,简称KCR)的...本研究调查了计算机辅助反馈策略对大学技术教育课程的影响。具体来说,研究探讨了计算机辅助反馈策略"对错反馈"(Knowledge of Responses,简称KCOR)和"正确答案反馈"(Knowledge of Correct Re-sponses,简称KCR)的有效性,并与"无反馈"(No Feedback)的学生的学习态度进行了比较。三组学生被分配到三个条件之一:KOR,KCR和NR(对照组)。通过四个星期的基于网络的教学实验,研究者获得学习者对计算机辅助反馈教学系略的态度。结果表明,学生对三种反馈显示出相同的态度。计算机辅助反馈策略可能是促进学习的可行的选择。展开更多
This paper considers the Geom/G/1 queueing model with feedback according to a late arrival system with delayed access (LASDA). Using recursive method, this paper studies the transient property of the queue size from...This paper considers the Geom/G/1 queueing model with feedback according to a late arrival system with delayed access (LASDA). Using recursive method, this paper studies the transient property of the queue size from the initial state N(0+) = i. Some new results about the recursive expression of the transient queue size distribution at any epoch n+ and the recursive formulae of the equilibrium distribution are obtained. Furthermore, the recursive formulae of the equilibrium queue size distribution at epoch n-, and n are obtained, too. The important relations between stationary queue size distributions at different epochs are discovered (being different from the relations given in M/G/I queueing system). The model discussed in this paper can be widely applied in all kinds of communications and computer network.展开更多
文摘本研究调查了计算机辅助反馈策略对大学技术教育课程的影响。具体来说,研究探讨了计算机辅助反馈策略"对错反馈"(Knowledge of Responses,简称KCOR)和"正确答案反馈"(Knowledge of Correct Re-sponses,简称KCR)的有效性,并与"无反馈"(No Feedback)的学生的学习态度进行了比较。三组学生被分配到三个条件之一:KOR,KCR和NR(对照组)。通过四个星期的基于网络的教学实验,研究者获得学习者对计算机辅助反馈教学系略的态度。结果表明,学生对三种反馈显示出相同的态度。计算机辅助反馈策略可能是促进学习的可行的选择。
基金supported by the National Natural Science Foundation of China under Grant No. 70871084the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 200806360001the Scientific Research Fund of Southwestern University of Finance and Economics
文摘This paper considers the Geom/G/1 queueing model with feedback according to a late arrival system with delayed access (LASDA). Using recursive method, this paper studies the transient property of the queue size from the initial state N(0+) = i. Some new results about the recursive expression of the transient queue size distribution at any epoch n+ and the recursive formulae of the equilibrium distribution are obtained. Furthermore, the recursive formulae of the equilibrium queue size distribution at epoch n-, and n are obtained, too. The important relations between stationary queue size distributions at different epochs are discovered (being different from the relations given in M/G/I queueing system). The model discussed in this paper can be widely applied in all kinds of communications and computer network.