This paper analyzes the physical potential, computing performance benefi t and power consumption of optical interconnects. Compared with electrical interconnections, optical ones show undoubted advantages based on phy...This paper analyzes the physical potential, computing performance benefi t and power consumption of optical interconnects. Compared with electrical interconnections, optical ones show undoubted advantages based on physical factor analysis. At the same time, since the recent developments drive us to think about whether these optical interconnect technologies with higher bandwidth but higher cost are worthy to be deployed, the computing performance comparison is performed. To meet the increasing demand of large-scale parallel or multi-processor computing tasks, an analytic method to evaluate parallel computing performance ofinterconnect systems is proposed in this paper. Both bandwidth-limit model and full-bandwidth model are under our investigation. Speedup and effi ciency are selected to represent the parallel performance of an interconnect system. Deploying the proposed models, we depict the performance gap between the optical and electrically interconnected systems. Another investigation on power consumption of commercial products showed that if the parallel interconnections are deployed, the unit power consumption will be reduced. Therefore, from the analysis of computing influence and power dissipation, we found that parallel optical interconnect is valuable combination of high performance and low energy consumption. Considering the possible data center under construction, huge power could be saved if parallel optical interconnects technologies are used.展开更多
The decomposition method was successfully used in solving of 3D problems with complex geometry shape in electron optics for the FDM (Finite Difference Method) and FEM (Finite Element Method) mostly to implement fa...The decomposition method was successfully used in solving of 3D problems with complex geometry shape in electron optics for the FDM (Finite Difference Method) and FEM (Finite Element Method) mostly to implement fast and robust parallel algorithms and computer codes. We suggest a new version of similar approach for the BEM (Boundary Element Method) based on the alternating method by Schwartz. This approach substantially reduce the dimension of dense global matrix of algebraic system produced by BEM algorithm to solve a complex problem on as single CPU (Central Processor Unit) desktop computer. New algorithm is iterative one, but exponential convergence for the Schwatlz's algorithm creates the fast numerical procedures. We describe the results of numerical simulation for a multi electrode ion transport system. The algorithms were implemented in the computer code "POISSON-3".展开更多
Generalized hypercubes (denoted by Q(d1,d2,... ,dn)) is an important network topology for parallel processing computer systems. Some methods of forming big cycle from small cycles and links have been developed. Ba...Generalized hypercubes (denoted by Q(d1,d2,... ,dn)) is an important network topology for parallel processing computer systems. Some methods of forming big cycle from small cycles and links have been developed. Basing on which, we has proved that in generalized hypercubes, every edge can be contained on a cycle of every length from 3 to IV(G)I inclusive and all kinds of length cycles have been constructed. The edgepanciclieity and node-pancilicity of generalized hypercubes can be applied in the topology design of computer networks to improve the network performance.展开更多
基金supported in part by National 863 Program (2009AA01Z256,No.2009AA01A345)National 973 Program (2007CB310705)the NSFC (60932004),P.R.China
文摘This paper analyzes the physical potential, computing performance benefi t and power consumption of optical interconnects. Compared with electrical interconnections, optical ones show undoubted advantages based on physical factor analysis. At the same time, since the recent developments drive us to think about whether these optical interconnect technologies with higher bandwidth but higher cost are worthy to be deployed, the computing performance comparison is performed. To meet the increasing demand of large-scale parallel or multi-processor computing tasks, an analytic method to evaluate parallel computing performance ofinterconnect systems is proposed in this paper. Both bandwidth-limit model and full-bandwidth model are under our investigation. Speedup and effi ciency are selected to represent the parallel performance of an interconnect system. Deploying the proposed models, we depict the performance gap between the optical and electrically interconnected systems. Another investigation on power consumption of commercial products showed that if the parallel interconnections are deployed, the unit power consumption will be reduced. Therefore, from the analysis of computing influence and power dissipation, we found that parallel optical interconnect is valuable combination of high performance and low energy consumption. Considering the possible data center under construction, huge power could be saved if parallel optical interconnects technologies are used.
文摘The decomposition method was successfully used in solving of 3D problems with complex geometry shape in electron optics for the FDM (Finite Difference Method) and FEM (Finite Element Method) mostly to implement fast and robust parallel algorithms and computer codes. We suggest a new version of similar approach for the BEM (Boundary Element Method) based on the alternating method by Schwartz. This approach substantially reduce the dimension of dense global matrix of algebraic system produced by BEM algorithm to solve a complex problem on as single CPU (Central Processor Unit) desktop computer. New algorithm is iterative one, but exponential convergence for the Schwatlz's algorithm creates the fast numerical procedures. We describe the results of numerical simulation for a multi electrode ion transport system. The algorithms were implemented in the computer code "POISSON-3".
基金This project is supported by National Natural Science Foundation of China (10671081)
文摘Generalized hypercubes (denoted by Q(d1,d2,... ,dn)) is an important network topology for parallel processing computer systems. Some methods of forming big cycle from small cycles and links have been developed. Basing on which, we has proved that in generalized hypercubes, every edge can be contained on a cycle of every length from 3 to IV(G)I inclusive and all kinds of length cycles have been constructed. The edgepanciclieity and node-pancilicity of generalized hypercubes can be applied in the topology design of computer networks to improve the network performance.