期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
量子计算与遗传算法的融合及其在计算机通信网优化中的应用 被引量:18
1
作者 孙力娟 王汝传 《电子与信息学报》 EI CSCD 北大核心 2007年第4期920-923,共4页
该文将量子计算与遗传算法进行融合,其核心是在常规遗传算法中将量子的态矢量引入遗传编码,并自适应地进行量子旋转门的调整以实现染色体的演化,使算法具有更好的种群多样性和全局寻优能力。通过求解计算机通信网优化问题的实例,结果表... 该文将量子计算与遗传算法进行融合,其核心是在常规遗传算法中将量子的态矢量引入遗传编码,并自适应地进行量子旋转门的调整以实现染色体的演化,使算法具有更好的种群多样性和全局寻优能力。通过求解计算机通信网优化问题的实例,结果表明:新方法比采用常规遗传算法具有明显的高效性。 展开更多
关键词 量子计算 遗传算法 融合 计算机网络优化
下载PDF
计算机网络质量优化方法研究
2
作者 赵飞 刘宁 秦敏 《通讯世界》 2016年第3期83-83,共1页
计算机服务作为研究对象,需要对计算机服务进行优化,并且认识到计算机服务在现代社会中发挥着重要的作用。在优化了计算机服务之后,可以大大的提高服务的质量,也同时是计算机网络服务的有力支撑理论。计算机网络服务与传统的网络相比,... 计算机服务作为研究对象,需要对计算机服务进行优化,并且认识到计算机服务在现代社会中发挥着重要的作用。在优化了计算机服务之后,可以大大的提高服务的质量,也同时是计算机网络服务的有力支撑理论。计算机网络服务与传统的网络相比,前者更能够启发一些网络工作人员,并且大大的提升他们的工作效率。本文针对计算机的网络质量优化方法进行总结归纳,用以对其他人选择。 展开更多
关键词 计算机网络质量优化方法 优化 计算机服务 归纳总结
下载PDF
基于改进遗传算法的计算机网络可靠性优化设计 被引量:6
3
作者 宋杨 《软件》 2020年第9期207-209,共3页
网络发展的时代,对于计算机网络的稳定性和可靠性研究是发展的必然趋势,在网络资源固定的情况下,在单位链路中增加网络资源的使用是整个网络系统优化的核心。在通过对遗传算法的改进,在满意度和适应度指标函数的判断下,改变网络的性能,... 网络发展的时代,对于计算机网络的稳定性和可靠性研究是发展的必然趋势,在网络资源固定的情况下,在单位链路中增加网络资源的使用是整个网络系统优化的核心。在通过对遗传算法的改进,在满意度和适应度指标函数的判断下,改变网络的性能,经过数据迭代的次数来控制网络的约束条件,根据函数的验证进行优化设计。在本文中通过研究网络改进成本和迭代次数的关系,来验证遗传算法优化的成果,为计算机网络可靠性优化设计提供了实际的数据依据。 展开更多
关键词 改进遗传算法 计算机网络可靠性优化设计 拓扑结构 满意度
下载PDF
计算机网络服务质量优化方法研究综述 被引量:1
4
作者 向灿 李尚东 《网络安全技术与应用》 2018年第8期8-8,12,共2页
随机计算机网络技术的快速发展,其已经融入到社会生产的各个环节。在新的历史发展时期,全面优化计算机网络服务质量至关重要。本文主要从计算机网络服务质量优化模型目标及步骤、优化模型表达分析、分类分析及实施方式等方面进行了相关... 随机计算机网络技术的快速发展,其已经融入到社会生产的各个环节。在新的历史发展时期,全面优化计算机网络服务质量至关重要。本文主要从计算机网络服务质量优化模型目标及步骤、优化模型表达分析、分类分析及实施方式等方面进行了相关的论述。 展开更多
关键词 计算机网络服务质量优化 计算机网络优化模型
原文传递
基于产学合作的地方高校网络工程专业创新人才培养 被引量:3
5
作者 云红艳 李建波 +1 位作者 徐茹滢 邓太勇 《计算机教育》 2019年第12期20-22,26,共4页
在新工科与"卓工"2.0背景下,针对网络工程专业面临内涵建设与人才培养转型升级的问题,提出地方高校通过产学合作促进网络工程专业综合改革,提升专业教育教学质量和创新人才培养机制,以青岛大学与网络企业开展产学合作协同育... 在新工科与"卓工"2.0背景下,针对网络工程专业面临内涵建设与人才培养转型升级的问题,提出地方高校通过产学合作促进网络工程专业综合改革,提升专业教育教学质量和创新人才培养机制,以青岛大学与网络企业开展产学合作协同育人为例,阐述地方高校通过教育部产学合作协同育人项目优化专业课程知识体系、丰富专业课程实验内容、提升专业教师实践技能培训、构建专业学生"阶梯式竞赛"梯队。 展开更多
关键词 新工科建设 计算机网络课程优化 阶梯式竞赛梯队 创新人才培养
下载PDF
岩巷高效快速施工综合技术与工艺 被引量:5
6
作者 王同旭 秦忠诚 李旭健 《矿山压力与顶板管理》 北大核心 2002年第1期49-50,共2页
综合应用高强锚杆支护技术 ,中深孔光爆技术和计算网络优化技术等 ,使岩巷掘进速度由 40~ 5 0m/月 ,提高到 1 1 0~ 1 40 m/月 ,最高月份达到 1 90 m,实现了减人、提效、集中和快速施工 。
关键词 岩巷快速施工 高强锚杆 中深孔光爆 计算机网络优化
下载PDF
Optimal transmission lines assignment with maximal reliabilities in multi-source multi-sink multi-state computer network 被引量:1
7
作者 章筠 徐正国 +2 位作者 王文海 卢建刚 孙优贤 《Journal of Central South University》 SCIE EI CAS 2013年第7期1868-1877,共10页
The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMM... The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMMCN reliabilities evaluation and multi-objective transmission lines assignment optimization. First, a reliability evaluation with a transmission line assignment (RETLA) algorithm is proposed to calculate the MMMCN reliabilities under the cost constraint for a certain transmission lines configuration. Second, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the non-dominated set of the transmission lines assignments based on the reliabilities obtained from the RETLA algorithm. By combining the RETLA and the NSGA-II algorithms together, the RETLA-NSGA II algorithm is proposed to solve the OTLAMR problem. The experiments result show that the RETLA-NSGA II algorithm can provide efficient solutions in a reasonable time, from which the decision makers can choose the best solution based on their preferences and experiences. 展开更多
关键词 multi-state network reliability evaluation transmission lines assignments multi-objective optimization non-dominatedsorting genetic algorithm II
下载PDF
Web-Based Synthetic Optimization Design System of Micro-Components
8
作者 GONG Xiao-yan JIANG Ping-yu 《Journal of China University of Mining and Technology》 EI 2005年第4期293-298,共6页
In order to meet the requirement of network synthesis optimization design for a micro component, a three-level information frame and functional module based on web was proposed. Firstly, the finite element method (FE... In order to meet the requirement of network synthesis optimization design for a micro component, a three-level information frame and functional module based on web was proposed. Firstly, the finite element method (FEM) was used to analyze the dynamic property of coupled-energy-domain of virtual prototype instances and to obtain some optimal information data. Secondly, the rough set theory (RST) and the genetic algorithm (GA) were used to work out the reduction of attributes and the acquisition of principle of optimality and to confirm key variable and restriction condition in the synthesis optimization design. Finally, the regression analysis (RA) and GA were used to establish the synthesis optimization design model and carry on the optimization design. A corresponding prototype system was also developed and the synthesis optimization design of a thermal actuated micro-pump was carded out as a demonstration in this paper. 展开更多
关键词 micro-component synthetic optimization design finite element method rough set theory genetic algorithm regression analysis
下载PDF
Architecture-level performance/power tradeoff in network processor design
9
作者 陈红松 季振洲 胡铭曾 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第1期45-48,共4页
Network processors are used in the core node of network to flexibly process packet streams. With the increase of performance, the power of network processor increases fast, and power and cooling become a bottleneck. A... Network processors are used in the core node of network to flexibly process packet streams. With the increase of performance, the power of network processor increases fast, and power and cooling become a bottleneck. Architecture-level power conscious design must go beyond low-level circuit design. Architectural power and performance tradeoff should be considered at the same time. Simulation is an efficient method to design modem network processor before making chip. In order to achieve the tradeoff between performance and power, the processor simulator is used to design the architecture of network processor. Using Netbeneh, Commubench benchmark and processor simulator-SimpleScalar, the performance and power of network processor are quantitatively evaluated. New performance tradeoff evaluation metric is proposed to analyze the architecture of network processor. Based on the high performance lnteI IXP 2800 Network processor eonfignration, optimized instruction fetch width and speed ,instruction issue width, instruction window size are analyzed and selected. Simulation resuits show that the tradeoff design method makes the usage of network processor more effectively. The optimal key parameters of network processor are important in architecture-level design. It is meaningful for the next generation network processor design. 展开更多
关键词 network processor design performance/power simulation tradeoff evaluation optimization
下载PDF
Research on Optimizing Computer Network Structure based on Genetic Algorithm and Modified Convex Optimization Theory
10
作者 Jinyu WANG 《International Journal of Technology Management》 2015年第7期95-97,共3页
In this paper, we report in-depth analysis and research on the optimizing computer network structure based on genetic algorithm and modified convex optimization theory. Machine learning method has been widely used in ... In this paper, we report in-depth analysis and research on the optimizing computer network structure based on genetic algorithm and modified convex optimization theory. Machine learning method has been widely used in the background and one of its core problems is to solve the optimization problem. Unlike traditional batch algorithm, stochastic gradient descent algorithm in each iteration calculation, the optimization of a single sample point only losses could greatly reduce the memory overhead. The experiment illustrates the feasibility of our proposed approach. 展开更多
关键词 Computer Network Genetic Algorithm Convex Optimization Structure Feature.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部