Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditio...Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditional corner properties. Based on the two properties, the concept of the fuzzy set is introduced into a detection. Secondly, the extracted-formulae of three groups including the features of the corner subject degree are derived. Through synthesizing the features of three groups, the judgments of the corner detection, location, and optimization are obtained. Finally, by using the algorithm the detection results of several examples and feature curves for some interested parts, as well as the detection results for the test images history in references are given. Results show that the algorithm is easily realized after adopting the fuzzy set, and the detection effect is very ideal.展开更多
Human motion detection based on computer vision is a frontier research topic and is causing an increasing attention in the field of computer vision research. The wavelet transform is used to sharpen the ambiguous edge...Human motion detection based on computer vision is a frontier research topic and is causing an increasing attention in the field of computer vision research. The wavelet transform is used to sharpen the ambiguous edges in human motion image. The shadow’s effect to the image processing is also removed. The edge extraction can be successfully realized. This is an effective method for the research of human motion analysis system.展开更多
Local binary pattern(LBP)is an important method for texture feature extraction of facial expression.However,it also has the shortcomings of high dimension,slow feature extraction and noeffective local or global featur...Local binary pattern(LBP)is an important method for texture feature extraction of facial expression.However,it also has the shortcomings of high dimension,slow feature extraction and noeffective local or global features extracted.To solve these problems,a facial expression feature extraction method is proposed based on improved LBP.Firstly,LBP is converted into double local binary pattern(DLBP).Then by combining Taylor expansion(TE)with DLBP,DLBP-TE algorithm is obtained.Finally,the DLBP-TE algorithm combined with extreme learning machine(ELM)is applied in seven kinds of ficial expression images and the corresponding experiments are carried out in Japanese adult female facial expression(JAFFE)database.The results show that the proposed method can significantly improve facial expression recognition rate.展开更多
Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk...Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk model(abbreviated as GMM-RW) is presented.To start with,GMM fitted by the rival penalized expectation maximization(RPEM) algorithm is employed to estimate the posterior probabilities of each annotation keyword.Subsequently,a random walk process over the constructed label similarity graph is implemented to further mine the potential correlations of the candidate annotations so as to capture the refining results,which plays a crucial role in semantic based image retrieval.The contributions exhibited in this work are multifold.First,GMM is exploited to capture the initial semantic annotations,especially the RPEM algorithm is utilized to train the model that can determine the number of components in GMM automatically.Second,a label similarity graph is constructed by a weighted linear combination of label similarity and visual similarity of images associated with the corresponding labels,which is able to avoid the phenomena of polysemy and synonym efficiently during the image annotation process.Third,the random walk is implemented over the constructed label graph to further refine the candidate set of annotations generated by GMM.Conducted experiments on the standard Corel5 k demonstrate that GMM-RW is significantly more effective than several state-of-the-arts regarding their effectiveness and efficiency in the task of automatic image annotation.展开更多
This paper presents a practical iterative algorithm for two-view metric reconstruction without any prior knowledge about the scene and motion in a nonsingular geometry configuration. The principal point is assumed to ...This paper presents a practical iterative algorithm for two-view metric reconstruction without any prior knowledge about the scene and motion in a nonsingular geometry configuration. The principal point is assumed to locate at the image center with zero skew and the same aspect ratio, and the interior parameters are fixed, so the self-calibration becomes focal-length cali- bration. Existing focal length calibration methods are direct solutions of a quadric composed of fundamental matrix, which are sensitive to noise. A quaternion-based linear iterative Least-Square Method is proposed in this paper, and one-dimensional searching for optimal focal length in a constrained region instead of solving optimization problems with inequality constraints is applied to simplify the computation complexity, then unique rotational matrix and translate vector are recovered. Experiments with simulation data and real images are given to verify the algorithm.展开更多
Crowded scene analysis is currently a hot and challenging topic in computer vision field. The ability to analyze motion patterns from videos is a difficult, but critical part of this problem. In this paper, we propose...Crowded scene analysis is currently a hot and challenging topic in computer vision field. The ability to analyze motion patterns from videos is a difficult, but critical part of this problem. In this paper, we propose a novel approach for the analysis of motion patterns by clustering the tracklets using an unsupervised hierarchical clustering algorithm, where the similarity between tracklets is measured by the Longest Common Subsequences. The tracklets are obtained by tracking dense points under three effective rules, therefore enabling it to capture the motion patterns in crowded scenes. The analysis of motion patterns is implemented in a completely unsupervised way, and the tracklets are clustered automatically through hierarchical clustering algorithm based on a graphic model. To validate the performance of our approach, we conducted experimental evaluations on two datasets. The results reveal the precise distributions of motion patterns in current crowded videos and demonstrate the effectiveness of our approach.展开更多
Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis...Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis of artificial neural network. Deep learning brings new development direction to artificial neural network. Convolution neural network is a new artificial neural network method, which combines artificial neural network and deep learning technology, and this new neural network is widely used in many fields of computer vision. Modern image recognition algorithm requires classifi cation system to adapt to different types of tasks, and deep network and convolution neural network is a hot research topic in neural networks. According to the characteristics of satellite digital image, we use the convolution neural network to classify the image, which combines texture features with spectral features. The experimental results show that the convolution neural network algorithm can effectively classify the image.展开更多
Aiming at the defects of traditional four-wheel aligner such as many sensors,complex operation and slow detection speed,a fast and accurate 3D four-wheel alignment detection method is studied.Firstly,a new and special...Aiming at the defects of traditional four-wheel aligner such as many sensors,complex operation and slow detection speed,a fast and accurate 3D four-wheel alignment detection method is studied.Firstly,a new and special circle center target board is designed to calibrate the camera,and then the registration of the homography matrix is optimized by using the improved RANSAC(Random sample consensus)algorithm combined with the designed special target board,and the parameters of the wheel alignment system are adjusted by using the space vector principle.Accurate measurements are made to obtain the parameters of the four-wheel alignment.Design a calibration comparison experiment between the traditional target board and the new type of target board,and conduct a comparative test with the existing four-wheel aligner of the depot.The experimental results show that the use of the new target board-binding optimization algorithm can improve the calibration efficiency by about 9%to 21%,while improving the calibration accuracy by about 10.6%to 17.8%.And through the real vehicle test,it is verified that the use of the new target combined with the optimization algorithm can ensure the accuracy and reliability of the four-wheel positioning.This method has a certain significance in the rapid detection of vehicle four-wheel alignment parameters.展开更多
This paper explores brain CT slices segmentation technique and some related problems, including contours segmentation algorithms, edge detector, algorithm evaluation and experimental results. This article describes a ...This paper explores brain CT slices segmentation technique and some related problems, including contours segmentation algorithms, edge detector, algorithm evaluation and experimental results. This article describes a method for contour-based segmentation of anatomical structures in 3D medical data sets. With this method, the user manually traces one or more 2D contours of an anatomical structure of interest on parallel planes arbitrarily cutting the data set. The experimental results showes the segmentation based on 3D brain volume and 2D CT slices. The main creative contributions in this paper are: (1) contours segmentation algorithm; (2) edge detector; (3) algorithm evaluation.展开更多
Omnidirectional imaging sensors have been used in more and more applications when a very large field of view is required.In this paper,we investigate the unwrapping,epipolar geometry and stereo rectification issues fo...Omnidirectional imaging sensors have been used in more and more applications when a very large field of view is required.In this paper,we investigate the unwrapping,epipolar geometry and stereo rectification issues for omnidirectional vision when the particular mirror model and the camera parameters are unknown in priori.First,the omnidirectional camera is calibrated under the Taylor model,and the parameters related to this model are obtained.In order to make the classical computer vision algorithms of conventional perspective cameras applicable,the ring omnidirectional image is unwrapped into two kinds of panoramas:cylinder and cuboid.Then the epipolar geometry of arbitrary camera configuration is analyzed and the essential matrix is deduced with its properties being indicated for ring images.After that,a simple stereo rectification method based on the essential matrix and the conformal mapping is proposed.Simulations and real data experimental results illustrate that our methods are effective for the omnidirectional camera under the constraint of a single view point.展开更多
文摘Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditional corner properties. Based on the two properties, the concept of the fuzzy set is introduced into a detection. Secondly, the extracted-formulae of three groups including the features of the corner subject degree are derived. Through synthesizing the features of three groups, the judgments of the corner detection, location, and optimization are obtained. Finally, by using the algorithm the detection results of several examples and feature curves for some interested parts, as well as the detection results for the test images history in references are given. Results show that the algorithm is easily realized after adopting the fuzzy set, and the detection effect is very ideal.
基金National Nature Science Foundation of China(60475036)
文摘Human motion detection based on computer vision is a frontier research topic and is causing an increasing attention in the field of computer vision research. The wavelet transform is used to sharpen the ambiguous edges in human motion image. The shadow’s effect to the image processing is also removed. The edge extraction can be successfully realized. This is an effective method for the research of human motion analysis system.
文摘Local binary pattern(LBP)is an important method for texture feature extraction of facial expression.However,it also has the shortcomings of high dimension,slow feature extraction and noeffective local or global features extracted.To solve these problems,a facial expression feature extraction method is proposed based on improved LBP.Firstly,LBP is converted into double local binary pattern(DLBP).Then by combining Taylor expansion(TE)with DLBP,DLBP-TE algorithm is obtained.Finally,the DLBP-TE algorithm combined with extreme learning machine(ELM)is applied in seven kinds of ficial expression images and the corresponding experiments are carried out in Japanese adult female facial expression(JAFFE)database.The results show that the proposed method can significantly improve facial expression recognition rate.
基金Supported by the National Basic Research Program of China(No.2013CB329502)the National Natural Science Foundation of China(No.61202212)+1 种基金the Special Research Project of the Educational Department of Shaanxi Province of China(No.15JK1038)the Key Research Project of Baoji University of Arts and Sciences(No.ZK16047)
文摘Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk model(abbreviated as GMM-RW) is presented.To start with,GMM fitted by the rival penalized expectation maximization(RPEM) algorithm is employed to estimate the posterior probabilities of each annotation keyword.Subsequently,a random walk process over the constructed label similarity graph is implemented to further mine the potential correlations of the candidate annotations so as to capture the refining results,which plays a crucial role in semantic based image retrieval.The contributions exhibited in this work are multifold.First,GMM is exploited to capture the initial semantic annotations,especially the RPEM algorithm is utilized to train the model that can determine the number of components in GMM automatically.Second,a label similarity graph is constructed by a weighted linear combination of label similarity and visual similarity of images associated with the corresponding labels,which is able to avoid the phenomena of polysemy and synonym efficiently during the image annotation process.Third,the random walk is implemented over the constructed label graph to further refine the candidate set of annotations generated by GMM.Conducted experiments on the standard Corel5 k demonstrate that GMM-RW is significantly more effective than several state-of-the-arts regarding their effectiveness and efficiency in the task of automatic image annotation.
文摘This paper presents a practical iterative algorithm for two-view metric reconstruction without any prior knowledge about the scene and motion in a nonsingular geometry configuration. The principal point is assumed to locate at the image center with zero skew and the same aspect ratio, and the interior parameters are fixed, so the self-calibration becomes focal-length cali- bration. Existing focal length calibration methods are direct solutions of a quadric composed of fundamental matrix, which are sensitive to noise. A quaternion-based linear iterative Least-Square Method is proposed in this paper, and one-dimensional searching for optimal focal length in a constrained region instead of solving optimization problems with inequality constraints is applied to simplify the computation complexity, then unique rotational matrix and translate vector are recovered. Experiments with simulation data and real images are given to verify the algorithm.
基金supported in part by National Basic Research Program of China (973 Program) under Grant No. 2011CB302203the National Natural Science Foundation of China under Grant No. 61273285
文摘Crowded scene analysis is currently a hot and challenging topic in computer vision field. The ability to analyze motion patterns from videos is a difficult, but critical part of this problem. In this paper, we propose a novel approach for the analysis of motion patterns by clustering the tracklets using an unsupervised hierarchical clustering algorithm, where the similarity between tracklets is measured by the Longest Common Subsequences. The tracklets are obtained by tracking dense points under three effective rules, therefore enabling it to capture the motion patterns in crowded scenes. The analysis of motion patterns is implemented in a completely unsupervised way, and the tracklets are clustered automatically through hierarchical clustering algorithm based on a graphic model. To validate the performance of our approach, we conducted experimental evaluations on two datasets. The results reveal the precise distributions of motion patterns in current crowded videos and demonstrate the effectiveness of our approach.
文摘Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis of artificial neural network. Deep learning brings new development direction to artificial neural network. Convolution neural network is a new artificial neural network method, which combines artificial neural network and deep learning technology, and this new neural network is widely used in many fields of computer vision. Modern image recognition algorithm requires classifi cation system to adapt to different types of tasks, and deep network and convolution neural network is a hot research topic in neural networks. According to the characteristics of satellite digital image, we use the convolution neural network to classify the image, which combines texture features with spectral features. The experimental results show that the convolution neural network algorithm can effectively classify the image.
基金Anhui Province Key Research and Development Program(No.2022107020012)Shenzhen Science and Technology Innovation Project(No.JSGG20191129102008260)。
文摘Aiming at the defects of traditional four-wheel aligner such as many sensors,complex operation and slow detection speed,a fast and accurate 3D four-wheel alignment detection method is studied.Firstly,a new and special circle center target board is designed to calibrate the camera,and then the registration of the homography matrix is optimized by using the improved RANSAC(Random sample consensus)algorithm combined with the designed special target board,and the parameters of the wheel alignment system are adjusted by using the space vector principle.Accurate measurements are made to obtain the parameters of the four-wheel alignment.Design a calibration comparison experiment between the traditional target board and the new type of target board,and conduct a comparative test with the existing four-wheel aligner of the depot.The experimental results show that the use of the new target board-binding optimization algorithm can improve the calibration efficiency by about 9%to 21%,while improving the calibration accuracy by about 10.6%to 17.8%.And through the real vehicle test,it is verified that the use of the new target combined with the optimization algorithm can ensure the accuracy and reliability of the four-wheel positioning.This method has a certain significance in the rapid detection of vehicle four-wheel alignment parameters.
文摘This paper explores brain CT slices segmentation technique and some related problems, including contours segmentation algorithms, edge detector, algorithm evaluation and experimental results. This article describes a method for contour-based segmentation of anatomical structures in 3D medical data sets. With this method, the user manually traces one or more 2D contours of an anatomical structure of interest on parallel planes arbitrarily cutting the data set. The experimental results showes the segmentation based on 3D brain volume and 2D CT slices. The main creative contributions in this paper are: (1) contours segmentation algorithm; (2) edge detector; (3) algorithm evaluation.
基金supported by the National Natural Science Foundation of China (Nos.60502006,60534070 and 90820306)the Science and Technology Plan of Zhejiang Province,China (No.2007C21007)
文摘Omnidirectional imaging sensors have been used in more and more applications when a very large field of view is required.In this paper,we investigate the unwrapping,epipolar geometry and stereo rectification issues for omnidirectional vision when the particular mirror model and the camera parameters are unknown in priori.First,the omnidirectional camera is calibrated under the Taylor model,and the parameters related to this model are obtained.In order to make the classical computer vision algorithms of conventional perspective cameras applicable,the ring omnidirectional image is unwrapped into two kinds of panoramas:cylinder and cuboid.Then the epipolar geometry of arbitrary camera configuration is analyzed and the essential matrix is deduced with its properties being indicated for ring images.After that,a simple stereo rectification method based on the essential matrix and the conformal mapping is proposed.Simulations and real data experimental results illustrate that our methods are effective for the omnidirectional camera under the constraint of a single view point.