期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
冠状动脉狭窄计算机辅助定量诊断 被引量:1
1
作者 顾建平 范春瑛 +5 位作者 段宝祥 何旭 陈亮 陈绍良 孙德才 许少睿 《江苏医药》 CAS CSCD 北大核心 2001年第4期267-269,共3页
目的 探讨冠状动脉狭窄计算机辅助定量诊断的临床价值。方法  ( 1)实验组 310例完成数字电影冠状动脉造影 (DCCA)后 ,以插入的导管管径为参照物 ,逐一标示正常段和狭窄段血管边缘 ,经计算机分析计算几何狭窄百分率、视频密度差异百分... 目的 探讨冠状动脉狭窄计算机辅助定量诊断的临床价值。方法  ( 1)实验组 310例完成数字电影冠状动脉造影 (DCCA)后 ,以插入的导管管径为参照物 ,逐一标示正常段和狭窄段血管边缘 ,经计算机分析计算几何狭窄百分率、视频密度差异百分率和狭窄段长度。以计帧法数出从左前降支、回旋支、右冠状动脉开口处显影至其末梢分支显影的帧数。 ( 2 )对照组对冠状动脉模型作数字电影摄影 ,对假设狭窄段经计算机分析几何狭窄和视频密度差异 ,并测量出假设狭窄段长度 ,用游标卡对假设狭窄段进行测量 ,将两组结果对照 ,作统计学处理。结果  ( 1)实验组 310例中 2 35例489支冠状动脉狭窄 ,其几何狭窄程度和视频密度差异程度 ,均以精确到 0 0 1的百分数表示。 ( 2 )对照组模型实物测量与计算机辅助测量结果无显著性差异。 展开更多
关键词 冠状动脉狭窄 诊断 计算机辅助定量诊断 冠心病
下载PDF
Prostate cancer identification: quantitative analysis of T2-weighted MR images based on a back propagation artificial neural network model 被引量:16
2
作者 ZHAO Kai WANG ChengYan +6 位作者 HU Juan YANG XueDong WANG He LI FeiYu ZHANG XiaoDong ZHANG Jue WANG XiaoYing 《Science China(Life Sciences)》 SCIE CAS CSCD 2015年第7期666-673,共8页
Computer-aided diagnosis(CAD) systems have been proposed to assist radiologists in making diagnostic decisions by providing helpful information. As one of the most important sequences in prostate magnetic resonance im... Computer-aided diagnosis(CAD) systems have been proposed to assist radiologists in making diagnostic decisions by providing helpful information. As one of the most important sequences in prostate magnetic resonance imaging(MRI), image features from T2-weighted images(T2WI) were extracted and evaluated for the diagnostic performances by using CAD. We extracted 12 quantitative image features from prostate T2-weighted MR images. The importance of each feature in cancer identification was compared in the peripheral zone(PZ) and central gland(CG), respectively. The performance of the computer-aided diagnosis system supported by an artificial neural network was tested. With computer-aided analysis of T2-weighted images, many characteristic features with different diagnostic capabilities can be extracted. We discovered most of the features(10/12) had significant difference(P<0.01) between PCa and non-PCa in the PZ, while only five features(sum average, minimum value, standard deviation, 10 th percentile, and entropy) had significant difference in CG. CAD prediction by features from T2 w images can reach high accuracy and specificity while maintaining acceptable sensitivity. The outcome is convictive and helpful in medical diagnosis. 展开更多
关键词 prostate cancer magnetic resonance imaging T2WI DIAGNOSIS COMPUTER-ASSISTED
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部