期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
活动断裂计算机辅助识别系统开发研究
1
作者 陈学华 王学军 沈海鸿 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2001年第3期262-265,共4页
在地理信息系统技术支持下,在判定和识别活动断裂中应用计算机技术,采用多种研究方法和手段,建立活动断裂辅助识别系统。通过矿区的实际应用,证明确定出的活动断裂对影响范围内的煤与瓦斯突出的发生具有控制作用。
关键词 活动断裂 地理信息系统 趋面分析 计算机辅助识别系统 瓦斯 突出机理
下载PDF
同侧眼底医学图像计算机辅助特征套合识别系统
2
《科技开发动态》 2004年第5期64-64,共1页
关键词 同侧眼底 医学图像 计算机辅助识别系统 血管特征
原文传递
防伪技术与印刷技术相结合 被引量:1
3
《企业标准化》 2004年第2期68-70,共3页
关键词 印刷技术 计算机辅助识别系统 版纹防伪设计 激光全息技术 防伪材料 信息网络 数码防伪 防伪技术
下载PDF
Prostate cancer identification: quantitative analysis of T2-weighted MR images based on a back propagation artificial neural network model 被引量:16
4
作者 ZHAO Kai WANG ChengYan +6 位作者 HU Juan YANG XueDong WANG He LI FeiYu ZHANG XiaoDong ZHANG Jue WANG XiaoYing 《Science China(Life Sciences)》 SCIE CAS CSCD 2015年第7期666-673,共8页
Computer-aided diagnosis(CAD) systems have been proposed to assist radiologists in making diagnostic decisions by providing helpful information. As one of the most important sequences in prostate magnetic resonance im... Computer-aided diagnosis(CAD) systems have been proposed to assist radiologists in making diagnostic decisions by providing helpful information. As one of the most important sequences in prostate magnetic resonance imaging(MRI), image features from T2-weighted images(T2WI) were extracted and evaluated for the diagnostic performances by using CAD. We extracted 12 quantitative image features from prostate T2-weighted MR images. The importance of each feature in cancer identification was compared in the peripheral zone(PZ) and central gland(CG), respectively. The performance of the computer-aided diagnosis system supported by an artificial neural network was tested. With computer-aided analysis of T2-weighted images, many characteristic features with different diagnostic capabilities can be extracted. We discovered most of the features(10/12) had significant difference(P<0.01) between PCa and non-PCa in the PZ, while only five features(sum average, minimum value, standard deviation, 10 th percentile, and entropy) had significant difference in CG. CAD prediction by features from T2 w images can reach high accuracy and specificity while maintaining acceptable sensitivity. The outcome is convictive and helpful in medical diagnosis. 展开更多
关键词 prostate cancer magnetic resonance imaging T2WI DIAGNOSIS COMPUTER-ASSISTED
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部