In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is est...In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.展开更多
This paper presents the heat transfer characteristics of A1203-water nanofluid in a coiled agitated vessel with propeller agitator. The experimental study was conducted using 0.10%, 0.20% and 0.30% volume concentra ti...This paper presents the heat transfer characteristics of A1203-water nanofluid in a coiled agitated vessel with propeller agitator. The experimental study was conducted using 0.10%, 0.20% and 0.30% volume concentra tion of A1203-water nanofluids. The results showed considerable enhancement of convective heat transfer using the nanofluids. The empirical correlations developed for Nusselt number in terms of Reynolds number, Prandtl number, viscosity ratio and volume concentration fit with the experimental data within ±10%. The heat transfer characteris tics were also simulated using computational fluid dynamics using FLUENT software with the standard ke model and multiple reference frame were adopted. The computational fluid dynamics (CFD) predicted Nusselt number agrees well with the experimental value and the discrepancy is found to be less than +8%.展开更多
With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the pla...With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the plain tube. The numerical results using computational fluid dynamics are validated with theoretical values. For the corrugated, nodal and horizontal grain tubes, the heat transfer enhancements(HTEs) are 2.31—2.53, 1.18—1.86 and 1.02—1.31 times of those of the plain tube, respectively. However, the improved HTEs are at the expense of pressure losses. The drag coefficients are 6.10—7.09, 2.06—11.03 and 0.53—1.83 higher, respectively. From the viewpoint of comprehensive heat transfer factor, the corrugated tube is recommended for engineering applications, followed by the horizontal grain tube.展开更多
PHEs (plate heat exchangers) are among the most common thermal equipments in diverse industries particularly in oil and gas companies. This wide usage is obviously due to significant benefits of these heat exchanger...PHEs (plate heat exchangers) are among the most common thermal equipments in diverse industries particularly in oil and gas companies. This wide usage is obviously due to significant benefits of these heat exchangers over other types. In this article, a behavioral analysis of heat transfer in fiat plates of these heat exchangers in laminar flow situation through CFD (computational fluid dynamics) simulation using FLUENT 6.3.26 software is done. The study reveals results graphically based on fluid's behavior in co-current and counter current flows and discusses thermal indexes consisting of heat transfer coefficient, Nusslet and total heat flux in both conditions. Eventually, a comparison via the graphical results is presented between the two types of flow directions.展开更多
The developing world still largely depends on biomass, such as wood, animal dung and agricultural waste for domestic fuel sources that are typically burned in traditional stoves. Ethiopia has different biomass resourc...The developing world still largely depends on biomass, such as wood, animal dung and agricultural waste for domestic fuel sources that are typically burned in traditional stoves. Ethiopia has different biomass resource for biochar production, through pyrolysis cook stove co-producing biochar. Coffee husks are the major solid residues from the handling and processing of coffee in the study area. This study was to evaluate the biochar co-producing pyrolysis cook stove with respect to heat transfer through the bed and biochar yield. From allothermal type of pyrolysis cook stove, the stove design was selected for both the computational fluid dynamic (CFD) simulation and experimental measurements. ANSYS 14.5 was used for CFD simulation of the wood combustion. The production of biochar from coffee husk, corncob and sawdust at different heating times, bed and stove surface temperature were undertaken. Bulk density, pH and surface area of the biochar were measured. While good agreement between simulation and experimental result was obtained in the conduction phase during pyrolysis, deviation between the two on account of the effect of volatile gas in changing the temperature trend within the biomass bed was noticed. Within the biomass type, the maximum mean biochar yield (38.91%) was seen from coffee husk. In the case of different stove designs, the minimum mean biochar yield (27.11%) was found from normal Anila stove. The pH of biochar is found to be significantly affected by the type of biomass (9.83 mean for corncob and coffee husk, 6.43 mean for sawdust), heating time (9.19 mean for 90 min and 8.01 mean for 30 min) and stove type (9.52 mean for normal Anila and 8.01 mean for flangeless Anila continuous feeding type). In fact, the type of biomass is observed to significantly affect the bulk density and surface area ofbiochar.展开更多
High-speed permanent magnetic generators (HSPMG) are common and important power generation equipments used in distributed generation systems. A 100 kW level HSPMG is investigated in this paper, and it is fluid-thermal...High-speed permanent magnetic generators (HSPMG) are common and important power generation equipments used in distributed generation systems. A 100 kW level HSPMG is investigated in this paper, and it is fluid-thermal coupling analyzed. The transient 2D electromagnetic field while machine is under rated operating is analyzed by using the time-stepping FEM, from which the electromagnetic performances and the loss distributions are obtained. Then, an analysis model for fluid-solid temperature field analysis is established. Taking losses as the distributed heat sources, the 3D thermal field is coupling calculated. The variations of heat transfer coefficient and temperature of fluid in stator grooves along the axial direction, as well as the whole region 3D temperature distribution in HSPMG are obtained. Then, considering the variations of heat sources distributions and heat transfer conditions, 3D temperature fields of HSPMG operating under different speeds are calculated, and the influences of machine operating speed on the HSPMG thermal performance are studied, based on which, the functions of machine temperature with operating speed and stator windings resistance are proposed. The obtained conclusions may provide a useful reference for the design and research of HSPMG.展开更多
To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio(D/dp<10) have now been considered in many areas. Fluid-to-wall heat transfer...To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio(D/dp<10) have now been considered in many areas. Fluid-to-wall heat transfer coefficient is an important factor determining the performance of this type of beds. In this work, local fluid-to-wall heat transfer characteristic in packed beds was studied by Computational Fluid Dynamics(CFD) at different Reynolds number for D/dp=1.5, 3.0 and 5.6. The results show that the fluid-to-wall heat transfer coefficient is oscillating along the bed with small tube-to-particle diameter ratio. Moreover, this phenomenon was explained by field synergy principle in detail. Two arrangement structures of particles in packed beds were recommended based on the synergy characteristic between flow and temperature fields. This study provides a new local understanding of fluid-to-wall heat transfer in packed beds with small tube-to-particle diameter ratio.展开更多
文摘In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.
文摘This paper presents the heat transfer characteristics of A1203-water nanofluid in a coiled agitated vessel with propeller agitator. The experimental study was conducted using 0.10%, 0.20% and 0.30% volume concentra tion of A1203-water nanofluids. The results showed considerable enhancement of convective heat transfer using the nanofluids. The empirical correlations developed for Nusselt number in terms of Reynolds number, Prandtl number, viscosity ratio and volume concentration fit with the experimental data within ±10%. The heat transfer characteris tics were also simulated using computational fluid dynamics using FLUENT software with the standard ke model and multiple reference frame were adopted. The computational fluid dynamics (CFD) predicted Nusselt number agrees well with the experimental value and the discrepancy is found to be less than +8%.
基金Supported by the National High Technology Research and Development Program of China("863"Program,No.2012AA053001)
文摘With isopentane as working fluid, the heat transfer performances for corrugated, nodal and horizontal grain tubes are simulated. The structural parameters of the three kinds of tubes are compared with those of the plain tube. The numerical results using computational fluid dynamics are validated with theoretical values. For the corrugated, nodal and horizontal grain tubes, the heat transfer enhancements(HTEs) are 2.31—2.53, 1.18—1.86 and 1.02—1.31 times of those of the plain tube, respectively. However, the improved HTEs are at the expense of pressure losses. The drag coefficients are 6.10—7.09, 2.06—11.03 and 0.53—1.83 higher, respectively. From the viewpoint of comprehensive heat transfer factor, the corrugated tube is recommended for engineering applications, followed by the horizontal grain tube.
文摘PHEs (plate heat exchangers) are among the most common thermal equipments in diverse industries particularly in oil and gas companies. This wide usage is obviously due to significant benefits of these heat exchangers over other types. In this article, a behavioral analysis of heat transfer in fiat plates of these heat exchangers in laminar flow situation through CFD (computational fluid dynamics) simulation using FLUENT 6.3.26 software is done. The study reveals results graphically based on fluid's behavior in co-current and counter current flows and discusses thermal indexes consisting of heat transfer coefficient, Nusslet and total heat flux in both conditions. Eventually, a comparison via the graphical results is presented between the two types of flow directions.
文摘The developing world still largely depends on biomass, such as wood, animal dung and agricultural waste for domestic fuel sources that are typically burned in traditional stoves. Ethiopia has different biomass resource for biochar production, through pyrolysis cook stove co-producing biochar. Coffee husks are the major solid residues from the handling and processing of coffee in the study area. This study was to evaluate the biochar co-producing pyrolysis cook stove with respect to heat transfer through the bed and biochar yield. From allothermal type of pyrolysis cook stove, the stove design was selected for both the computational fluid dynamic (CFD) simulation and experimental measurements. ANSYS 14.5 was used for CFD simulation of the wood combustion. The production of biochar from coffee husk, corncob and sawdust at different heating times, bed and stove surface temperature were undertaken. Bulk density, pH and surface area of the biochar were measured. While good agreement between simulation and experimental result was obtained in the conduction phase during pyrolysis, deviation between the two on account of the effect of volatile gas in changing the temperature trend within the biomass bed was noticed. Within the biomass type, the maximum mean biochar yield (38.91%) was seen from coffee husk. In the case of different stove designs, the minimum mean biochar yield (27.11%) was found from normal Anila stove. The pH of biochar is found to be significantly affected by the type of biomass (9.83 mean for corncob and coffee husk, 6.43 mean for sawdust), heating time (9.19 mean for 90 min and 8.01 mean for 30 min) and stove type (9.52 mean for normal Anila and 8.01 mean for flangeless Anila continuous feeding type). In fact, the type of biomass is observed to significantly affect the bulk density and surface area ofbiochar.
基金supported by the National High Technology Research and Development Program of China ("863" Program) (Grant No. 2007AA050501)the Heilongjiang Critical Priority Research (Grant No. GB08A302)
文摘High-speed permanent magnetic generators (HSPMG) are common and important power generation equipments used in distributed generation systems. A 100 kW level HSPMG is investigated in this paper, and it is fluid-thermal coupling analyzed. The transient 2D electromagnetic field while machine is under rated operating is analyzed by using the time-stepping FEM, from which the electromagnetic performances and the loss distributions are obtained. Then, an analysis model for fluid-solid temperature field analysis is established. Taking losses as the distributed heat sources, the 3D thermal field is coupling calculated. The variations of heat transfer coefficient and temperature of fluid in stator grooves along the axial direction, as well as the whole region 3D temperature distribution in HSPMG are obtained. Then, considering the variations of heat sources distributions and heat transfer conditions, 3D temperature fields of HSPMG operating under different speeds are calculated, and the influences of machine operating speed on the HSPMG thermal performance are studied, based on which, the functions of machine temperature with operating speed and stator windings resistance are proposed. The obtained conclusions may provide a useful reference for the design and research of HSPMG.
基金supported by the National Natural Science Foundation of China(5127618151476173)the National Basic Research Program of China(2011CB 710705)
文摘To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio(D/dp<10) have now been considered in many areas. Fluid-to-wall heat transfer coefficient is an important factor determining the performance of this type of beds. In this work, local fluid-to-wall heat transfer characteristic in packed beds was studied by Computational Fluid Dynamics(CFD) at different Reynolds number for D/dp=1.5, 3.0 and 5.6. The results show that the fluid-to-wall heat transfer coefficient is oscillating along the bed with small tube-to-particle diameter ratio. Moreover, this phenomenon was explained by field synergy principle in detail. Two arrangement structures of particles in packed beds were recommended based on the synergy characteristic between flow and temperature fields. This study provides a new local understanding of fluid-to-wall heat transfer in packed beds with small tube-to-particle diameter ratio.