严寒地区冰雪飞溅问题对高速铁路运营安全性有直接影响,现场调研发现多处冰块脱落击打应答器的现象,而国内外对此研究尚未见文献报道。采用基于离散元-多柔性体动力学-计算流体力学(discrete element method-multi flexible body dynami...严寒地区冰雪飞溅问题对高速铁路运营安全性有直接影响,现场调研发现多处冰块脱落击打应答器的现象,而国内外对此研究尚未见文献报道。采用基于离散元-多柔性体动力学-计算流体力学(discrete element method-multi flexible body dynamics-computational fluid dynamics, DEM-MFBD-CFD)耦合分析法,建立车厢底板结冰脱落击打应答器模型,并借助风洞和现场试验结果,验证了模型的可靠性;基于建立的分析模型研究不同列车速度、风压变化、冰块质量等因素对应答器击打的受力影响。结果表明:应答器受到的最大应力随列车运行速度呈现幂函数增长关系,当行车速度增大到350 km/h时,最大应力达15.591 MPa,约为150 km/h时的3.5倍;且随冰块质量增加应答器最大应力呈现先迅速增加后缓慢增长趋势;当横风风速为5~20 m/s作用时,应答器表面所受到的最大应力相差不大,表明横风对冰雪击打应答器作用可忽略不计;为减小冰雪飞溅击打应答器危害,可采取除融雪手段、列车降速等措施。展开更多
北极运输船舶常航行于由破冰船开辟的碎冰航道中;尽管这避免了船舶与层冰碰撞引起的巨大冰阻力,但船舶与航道中碎冰的相互作用受到两侧层冰的影响,进而会对船舶的航行性能产生影响。目前,碎冰航道两侧层冰对船舶航行性能的影响尚未得到...北极运输船舶常航行于由破冰船开辟的碎冰航道中;尽管这避免了船舶与层冰碰撞引起的巨大冰阻力,但船舶与航道中碎冰的相互作用受到两侧层冰的影响,进而会对船舶的航行性能产生影响。目前,碎冰航道两侧层冰对船舶航行性能的影响尚未得到充分研究,是否考虑这一影响是北极船舶设计的一个重要问题,采用CFD-DEM(computational fluid dynamics-discrete element method)耦合方法模拟船舶在碎冰航道中的航行过程并分析船-碎冰相互作用特点,进而对船舶阻力进行数值预报。首先,开展了网格和时间步长的收敛性分析以评估数值误差和不确定度,验证了数值模型的可靠性;在此基础上的预报结果表明,由于两侧层冰对船舶兴波产生影响,船舶水阻力随航道宽度的减小而小幅增大且主要为压阻力的增加;船舶冰阻力随航道宽度的减小而迅速增大,船体两侧的碎冰堆积现象是导致冰阻力增大的主要原因。展开更多
文摘北极运输船舶常航行于由破冰船开辟的碎冰航道中;尽管这避免了船舶与层冰碰撞引起的巨大冰阻力,但船舶与航道中碎冰的相互作用受到两侧层冰的影响,进而会对船舶的航行性能产生影响。目前,碎冰航道两侧层冰对船舶航行性能的影响尚未得到充分研究,是否考虑这一影响是北极船舶设计的一个重要问题,采用CFD-DEM(computational fluid dynamics-discrete element method)耦合方法模拟船舶在碎冰航道中的航行过程并分析船-碎冰相互作用特点,进而对船舶阻力进行数值预报。首先,开展了网格和时间步长的收敛性分析以评估数值误差和不确定度,验证了数值模型的可靠性;在此基础上的预报结果表明,由于两侧层冰对船舶兴波产生影响,船舶水阻力随航道宽度的减小而小幅增大且主要为压阻力的增加;船舶冰阻力随航道宽度的减小而迅速增大,船体两侧的碎冰堆积现象是导致冰阻力增大的主要原因。