Rapid satellite-to-site visibility determination is of great significance to coverage analysis of satellite constellations as well as onboard mission planning of autonomous spacecraft. This paper presents a novel self...Rapid satellite-to-site visibility determination is of great significance to coverage analysis of satellite constellations as well as onboard mission planning of autonomous spacecraft. This paper presents a novel self-adaptive Hermite interpolation technique for rapid satellite-to-site visibility determination. Piecewise cubic curves are utilized to approximate the waveform of the visibility function versus time. The fourth-order derivative is used to control the approximation error and to optimize the time step for interpolation. The rise and set times are analytically obtained from the roots of cubic polynomials. To further increase the computational speed, an interval shrinking strategy is adopted via investigating the geometric relationship between the ground viewing cone and the orbit trajectory. Simulation results show a 98% decrease in computation time over the brute force method. The method is suitable for all orbital types and analytical orbit propagators.展开更多
基金supported in part by Ministry of Science and Technology of China Through Cooperative Agreement(Grant No.2014CB845303)
文摘Rapid satellite-to-site visibility determination is of great significance to coverage analysis of satellite constellations as well as onboard mission planning of autonomous spacecraft. This paper presents a novel self-adaptive Hermite interpolation technique for rapid satellite-to-site visibility determination. Piecewise cubic curves are utilized to approximate the waveform of the visibility function versus time. The fourth-order derivative is used to control the approximation error and to optimize the time step for interpolation. The rise and set times are analytically obtained from the roots of cubic polynomials. To further increase the computational speed, an interval shrinking strategy is adopted via investigating the geometric relationship between the ground viewing cone and the orbit trajectory. Simulation results show a 98% decrease in computation time over the brute force method. The method is suitable for all orbital types and analytical orbit propagators.