An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programmin...An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.展开更多
A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem wi...A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem with a constraint condition, such as a ball constraint. The success of the DE algorithm lies in its ability to handle a non-differentiable and nonlinear cost function. In this study, the DE algorithm and the traditional optimization algorithms used to obtain the CNOPs are compared by analyzing a theoretical grassland ecosystem model and a dynamic global vegetation model. This study shows that the CNOPs generated by the DE algorithm are similar to those by the sequential quadratic programming (SQP) algorithm and the spectral projected gradients (SPG2) algorithm. If the cost function is non-differentiable, the CNOPs could also be caught with the DE algorithm. The numerical results suggest the DE algorithm can be employed to calculate the CNOP, especially when the cost function is non-differentiable.展开更多
Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable si...Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable signal to interference plus noise ratio(SINR) loss constraint in cognitive transmission to protect primary users.Considering power allocation problem for cognitive users over flat fading channels,in order to maximize throughput of cognitive users subject to the allowable SINR loss constraint and maximum transmit power for each cognitive user,we propose a new power allocation algorithm.The comparison of computer simulation between our proposed algorithm and the algorithm based on interference power constraint is provided to show that it gets more throughput and provides stability to cognitive radio networks.展开更多
A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the densit...A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the density of any point with Shepard interpolation function.The influence of the diameter of interpolation is discussed which shows good robustness.The new approach is demonstrated on the minimum volume problem subjected to a displacement constraint.The rational approximation for material properties(RAMP) method and a dual programming optimization algorithm are used to penalize the intermediate density point to achieve nearly 0-1 solutions.Solutions are shown to meet stability,mesh dependence or non-checkerboard patterns of topology optimization without additional constraints.Finally,the computational efficiency is greatly improved by multithread parallel computing with OpenMP.展开更多
Based on the strong magnetic anisotropy along the symmetry of the crystal, we construct a U(2) non-Abelian gauge potential for the molecular nanomagnet Mn12 by varying the external magnetic field adiabatically. More...Based on the strong magnetic anisotropy along the symmetry of the crystal, we construct a U(2) non-Abelian gauge potential for the molecular nanomagnet Mn12 by varying the external magnetic field adiabatically. Moreover, the non-Abelian geometric phase and the unitary matrix operation, which are tile key steps to realize the universal holonomic quantum computing in the degenerate subspace, are also obtained by means of choosing an evolution path properly.展开更多
Shape from shading(SFS)is an important domain in computer vision.The paper presented an improved algorithm of shape from shading based on a single image according to an existed one.The presented algorithm enhanced the...Shape from shading(SFS)is an important domain in computer vision.The paper presented an improved algorithm of shape from shading based on a single image according to an existed one.The presented algorithm enhanced the boundary constraints to eliminate the rotation distortion on the border of reconstructed object and introduced the factor of brightness error to weaken the influence irradiance equation’s nonlinearity on reconstructed errors.The reconstructed results verify the performance improvement in terms of accuracy by the input image of a synthetic image and a real image of weld.展开更多
Aiming at the problem that current geographical information systems(GIS)usually does not maintain semantic and user-defined constraints out of three consistency-constrains(third refers to topology constraint),this res...Aiming at the problem that current geographical information systems(GIS)usually does not maintain semantic and user-defined constraints out of three consistency-constrains(third refers to topology constraint),this research focuses on building an efficient spatial data management system using two constraint violation detection methods.An algorithm for constraint violation detection has been derived to maintain the error-free up-to-date spatial database.Results indicate that the developed constraint violation detection(CVD)system is more efficient compared with conventional systems.展开更多
The Bézier curve is one of the most commonly used parametric curves in CAGD and Computer Graphics and has many good properties for shape design. Developing more convenient techniques for designing and modifying B...The Bézier curve is one of the most commonly used parametric curves in CAGD and Computer Graphics and has many good properties for shape design. Developing more convenient techniques for designing and modifying Bézier curve is an im- portant problem, and is also an important research issue in CAD/CAM and NC technology fields. This work investigates the optimal shape modification of Bézier curves by geometric constraints. This paper presents a new method by constrained optimi- zation based on changing the control points of the curves. By this method, the authors modify control points of the original Bézier curves to satisfy the given constraints and modify the shape of the curves optimally. Practical examples are also given.展开更多
The performance bound of cognitive radio systems is analyzed.We use opportunistic spectrum effi-ciency(OSE)as the performance metric,and point out that the maximum achievable OSE can be used toevaluate the maximum val...The performance bound of cognitive radio systems is analyzed.We use opportunistic spectrum effi-ciency(OSE)as the performance metric,and point out that the maximum achievable OSE can be used toevaluate the maximum value that the introduction of secondary users can add to the conventional wirelesssystems.Based on assumptions of the PU s traffic model and some reasonable approximations,the ex-pression of OSE is obtained and the maximum achievable OSE is derived by solving an optimization prob-lem.The results are verified by computer simulation.展开更多
Calibration of magnetometer is an essential part to obtain high measurement precision.However,the existing calibration methods are basically the calibration of all attitudes,which means tough work when the magnetomete...Calibration of magnetometer is an essential part to obtain high measurement precision.However,the existing calibration methods are basically the calibration of all attitudes,which means tough work when the magnetometer is applied in strapdown inertial navigation system(SINS).So a quick,easy and effective calibration algorithm is developed based on the ellipsoid constraint to calibrate magnetometers.In this paper,the measuring principle and error characteristic of the magnetometer are analysed to study its magnetic interference.During the process,a magnetometer calibration model is set up to convert the calibration to ellipsoid fitting based on the characteristic of hard magnetic interference and soft magnetic interference.Then the algorithm is tested by mimic experiment.The result shows that measurement precision is improved after the calibration,and then the magnetometer is installed in a control cabin of an underwater robot which is designed and developed by us,and actual magnetometer calibration experiments are conducted to further verify the validity of the algorithm.展开更多
基金The National Natural Science Foundation of China(No. 50908235 )China Postdoctoral Science Foundation (No.201003520)
文摘An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.
基金provided by grants from the National Basic Research Program of China (Grant No. 2006CB400503)LASG Free Exploration Fund+1 种基金LASG State Key Laboratory Special Fundthe KZCX3-SW-230 of the Chinese Academy of Sciences
文摘A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem with a constraint condition, such as a ball constraint. The success of the DE algorithm lies in its ability to handle a non-differentiable and nonlinear cost function. In this study, the DE algorithm and the traditional optimization algorithms used to obtain the CNOPs are compared by analyzing a theoretical grassland ecosystem model and a dynamic global vegetation model. This study shows that the CNOPs generated by the DE algorithm are similar to those by the sequential quadratic programming (SQP) algorithm and the spectral projected gradients (SPG2) algorithm. If the cost function is non-differentiable, the CNOPs could also be caught with the DE algorithm. The numerical results suggest the DE algorithm can be employed to calculate the CNOP, especially when the cost function is non-differentiable.
基金ACKNOWLEDGEMENTS This work is supported by National Natural Science Foundation of China (No. 61171079). The authors would like to thank the editors and the anonymous reviewers for their detailed constructive comments that helped to improve the presentation of this paper.
文摘Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable signal to interference plus noise ratio(SINR) loss constraint in cognitive transmission to protect primary users.Considering power allocation problem for cognitive users over flat fading channels,in order to maximize throughput of cognitive users subject to the allowable SINR loss constraint and maximum transmit power for each cognitive user,we propose a new power allocation algorithm.The comparison of computer simulation between our proposed algorithm and the algorithm based on interference power constraint is provided to show that it gets more throughput and provides stability to cognitive radio networks.
基金Projects(11372055,11302033)supported by the National Natural Science Foundation of ChinaProject supported by the Huxiang Scholar Foundation from Changsha University of Science and Technology,ChinaProject(2012KFJJ02)supported by the Key Labortory of Lightweight and Reliability Technology for Engineering Velicle,Education Department of Hunan Province,China
文摘A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the density of any point with Shepard interpolation function.The influence of the diameter of interpolation is discussed which shows good robustness.The new approach is demonstrated on the minimum volume problem subjected to a displacement constraint.The rational approximation for material properties(RAMP) method and a dual programming optimization algorithm are used to penalize the intermediate density point to achieve nearly 0-1 solutions.Solutions are shown to meet stability,mesh dependence or non-checkerboard patterns of topology optimization without additional constraints.Finally,the computational efficiency is greatly improved by multithread parallel computing with OpenMP.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11074154, 11074184, and 11075099the National Science Funding of Zhejiang Province under Grant No. Y6090001
文摘Based on the strong magnetic anisotropy along the symmetry of the crystal, we construct a U(2) non-Abelian gauge potential for the molecular nanomagnet Mn12 by varying the external magnetic field adiabatically. Moreover, the non-Abelian geometric phase and the unitary matrix operation, which are tile key steps to realize the universal holonomic quantum computing in the degenerate subspace, are also obtained by means of choosing an evolution path properly.
基金National Natural Science Foundation ofChina(No.60 4740 3 6)
文摘Shape from shading(SFS)is an important domain in computer vision.The paper presented an improved algorithm of shape from shading based on a single image according to an existed one.The presented algorithm enhanced the boundary constraints to eliminate the rotation distortion on the border of reconstructed object and introduced the factor of brightness error to weaken the influence irradiance equation’s nonlinearity on reconstructed errors.The reconstructed results verify the performance improvement in terms of accuracy by the input image of a synthetic image and a real image of weld.
文摘Aiming at the problem that current geographical information systems(GIS)usually does not maintain semantic and user-defined constraints out of three consistency-constrains(third refers to topology constraint),this research focuses on building an efficient spatial data management system using two constraint violation detection methods.An algorithm for constraint violation detection has been derived to maintain the error-free up-to-date spatial database.Results indicate that the developed constraint violation detection(CVD)system is more efficient compared with conventional systems.
基金Project (No.10471128) supported by the National Natural ScienceFoundation of China
文摘The Bézier curve is one of the most commonly used parametric curves in CAGD and Computer Graphics and has many good properties for shape design. Developing more convenient techniques for designing and modifying Bézier curve is an im- portant problem, and is also an important research issue in CAD/CAM and NC technology fields. This work investigates the optimal shape modification of Bézier curves by geometric constraints. This paper presents a new method by constrained optimi- zation based on changing the control points of the curves. By this method, the authors modify control points of the original Bézier curves to satisfy the given constraints and modify the shape of the curves optimally. Practical examples are also given.
基金Supported by the National Basic Research Program of China (2007CB310608)DoCoMo--Tsinghua Cooperation Project and Tsinghua Basic Research Foundation (JC2007050)
文摘The performance bound of cognitive radio systems is analyzed.We use opportunistic spectrum effi-ciency(OSE)as the performance metric,and point out that the maximum achievable OSE can be used toevaluate the maximum value that the introduction of secondary users can add to the conventional wirelesssystems.Based on assumptions of the PU s traffic model and some reasonable approximations,the ex-pression of OSE is obtained and the maximum achievable OSE is derived by solving an optimization prob-lem.The results are verified by computer simulation.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA04201)
文摘Calibration of magnetometer is an essential part to obtain high measurement precision.However,the existing calibration methods are basically the calibration of all attitudes,which means tough work when the magnetometer is applied in strapdown inertial navigation system(SINS).So a quick,easy and effective calibration algorithm is developed based on the ellipsoid constraint to calibrate magnetometers.In this paper,the measuring principle and error characteristic of the magnetometer are analysed to study its magnetic interference.During the process,a magnetometer calibration model is set up to convert the calibration to ellipsoid fitting based on the characteristic of hard magnetic interference and soft magnetic interference.Then the algorithm is tested by mimic experiment.The result shows that measurement precision is improved after the calibration,and then the magnetometer is installed in a control cabin of an underwater robot which is designed and developed by us,and actual magnetometer calibration experiments are conducted to further verify the validity of the algorithm.