In order to effectively derive the inverse kinematic solution of the Delta robot and realize actuator control a description of the linear graph principle for automatically generating kinematic equations in a mechanica...In order to effectively derive the inverse kinematic solution of the Delta robot and realize actuator control a description of the linear graph principle for automatically generating kinematic equations in a mechanical system as well as the symbolic computation implementation of this procedure is reviewed and projected into the Delta robot. Based on the established linear graph representation the explicit symbolic expression of constraint equations and inverse kinematic solutions are obtained successfully using a symbolic computation engine Maple so that actuator control and trajectory tracking can be directly realized.Two practical motions the circular path and Adept motion are simulated for the validation of symbolic solutions respectively.Results indicate that the simulation satisfies the requirement of the quick motion within an acceptable threshold. Thus the precision of kinematic response can be confirmed and the correctness of inverse solution is verified.展开更多
This paper presents some techniques for synthesizing novel view for a virtual viewpoint from two given views cap-tured at different viewpoints to achieve both high quality and high efficiency. The whole process consis...This paper presents some techniques for synthesizing novel view for a virtual viewpoint from two given views cap-tured at different viewpoints to achieve both high quality and high efficiency. The whole process consists of three passes. The first pass recovers depth map. We formulate it as pixel labelling and propose a bisection approach to solve it. It is accomplished in log2n(n is the number of depth levels) steps,each of which involves a single graph cut computation. The second pass detects occluded pixels and reasons about their depth. It fits a foreground depth curve and a background depth curve using depth of nearby fore-ground and background pixels,and then distinguishes foreground and background pixels by minimizing a global energy,which involves only one graph cut computation. The third pass finds for each pixel in the novel view the corresponding pixels in the input views and computes its color. The whole process involves only a small number of graph cut computations,therefore it is efficient. And,visual artifacts in the synthesized view can be removed successfully by correcting depth of the occluded pixels. Experimental results demonstrate that both high quality and high efficiency are achieved by the proposed techniques.展开更多
The Bézier curve is one of the most commonly used parametric curves in CAGD and Computer Graphics and has many good properties for shape design. Developing more convenient techniques for designing and modifying B...The Bézier curve is one of the most commonly used parametric curves in CAGD and Computer Graphics and has many good properties for shape design. Developing more convenient techniques for designing and modifying Bézier curve is an im- portant problem, and is also an important research issue in CAD/CAM and NC technology fields. This work investigates the optimal shape modification of Bézier curves by geometric constraints. This paper presents a new method by constrained optimi- zation based on changing the control points of the curves. By this method, the authors modify control points of the original Bézier curves to satisfy the given constraints and modify the shape of the curves optimally. Practical examples are also given.展开更多
Since brain tumors endanger people’s living quality and even their lives, the accuracy of classification becomes more important. Conventional classifying techniques are used to deal with those datasets with character...Since brain tumors endanger people’s living quality and even their lives, the accuracy of classification becomes more important. Conventional classifying techniques are used to deal with those datasets with characters and numbers. It is difficult, however, to apply them to datasets that include brain images and medical history (alphanumeric data), especially to guarantee the accuracy. For these datasets, this paper combines the knowledge of medical field and improves the traditional decision tree. The new classification algorithm with the direction of the medical knowledge not only adds the interaction with the doctors, but also enhances the quality of classification. The algorithm has been used on real brain CT images and a precious rule has been gained from the experiments. This paper shows that the algorithm works well for real CT data.展开更多
X-ray in-line phase contrast imaging enables weakly to absorb specimens to be imaged successfully with high resolution and definition. In this paper we use computer simulation method to analyze how each parameter infl...X-ray in-line phase contrast imaging enables weakly to absorb specimens to be imaged successfully with high resolution and definition. In this paper we use computer simulation method to analyze how each parameter influences the quality of the image. It can avoid wasting unnecessary time and materials in the course of experiment to get ideal images.展开更多
An efficient algorithm is proposed for factoring polynomials over an algebraic extension field defined by a polynomial ring modulo a maximal ideal. If the maximal ideal is given by its CrSbner basis, no extra Grbbner ...An efficient algorithm is proposed for factoring polynomials over an algebraic extension field defined by a polynomial ring modulo a maximal ideal. If the maximal ideal is given by its CrSbner basis, no extra Grbbner basis computation is needed for factoring a polynomial over this extension field. Nothing more than linear algebraic technique is used to get a characteristic polynomial of a generic linear map. Then this polynomial is factorized over the ground field. From its factors, the factorization of the polynomial over the extension field is obtained. The algorithm has been implemented in Magma and computer experiments indicate that it is very efficient, particularly for complicated examples.展开更多
Histone modifications have been widely elucidated to play vital roles in gene regulation and cell identity. The Roadmap Epigenomics Consortium generated a reference catalog of several key histone modifications across ...Histone modifications have been widely elucidated to play vital roles in gene regulation and cell identity. The Roadmap Epigenomics Consortium generated a reference catalog of several key histone modifications across 〉lOOs of human cell types and tissues. Decoding these epJgenomes into functional regulatory elements is a challenging task in computational biology. To this end, we adopted a differential chromatin modification analysis framework to comprehensively determine and characterize cell type-specific regulatory elements (CSREs) and their histone modification codes in the human epigenomes of five histone modifications across 127 tissues or cell types. The CSREs show significant relevance with cell type-specific biological functions and diseases and cell identity. Clustering of CSREs with their specificity signals reveals distinct histone codes, demonstrating the diversity of functional roles of CSREs within the same cell or tissue. Last but not least, dynamics of CSREs from close cell types or tissues can give a detailed view of developmental processes such as normal tissue development and cancer occurrence.展开更多
A new identity-based (ID-based) aggregate signature scheme which does not need any kind of interaction among the signers was proposed to provide partial aggregation. Compared with the existing ID-based aggregate sig...A new identity-based (ID-based) aggregate signature scheme which does not need any kind of interaction among the signers was proposed to provide partial aggregation. Compared with the existing ID-based aggregate signatures, the scheme is more efficient in terms of computational cost, Security in the random oracle model based on a variant of the computation Diflle-Hellman (CDH) problem is captured.展开更多
An efficient novel algorithm was developed to estimate the Density of States(DOS) for large systems by calculating the ensemble means of an extensive physical variable, such as the potential energy, U, in generalized ...An efficient novel algorithm was developed to estimate the Density of States(DOS) for large systems by calculating the ensemble means of an extensive physical variable, such as the potential energy, U, in generalized canonical ensembles to interpolate the interior reverse temperature curve β_s(U)=SU/U, where S(U) is the logarithm of the DOS. This curve is computed with different accuracies in different energy regions to capture the dependence of the reverse temperature on U without setting prior grid in the U space. By combining with a U-compression transformation, we decrease the computational complexity from O(N3/2) in the normal Wang Landau type method to O(N1/2) in the current algorithm, as the degrees of freedom of system N. The efficiency of the algorithm is demonstrated by applying to Lennard Jones fluids with various N, along with its ability to find different macroscopic states, including metastable states.展开更多
基金The National Natural Science Foundation of China(No.51205208)
文摘In order to effectively derive the inverse kinematic solution of the Delta robot and realize actuator control a description of the linear graph principle for automatically generating kinematic equations in a mechanical system as well as the symbolic computation implementation of this procedure is reviewed and projected into the Delta robot. Based on the established linear graph representation the explicit symbolic expression of constraint equations and inverse kinematic solutions are obtained successfully using a symbolic computation engine Maple so that actuator control and trajectory tracking can be directly realized.Two practical motions the circular path and Adept motion are simulated for the validation of symbolic solutions respectively.Results indicate that the simulation satisfies the requirement of the quick motion within an acceptable threshold. Thus the precision of kinematic response can be confirmed and the correctness of inverse solution is verified.
基金Project (No. 2002CB312101) supported by the National Basic Re-search Program (973) of China
文摘This paper presents some techniques for synthesizing novel view for a virtual viewpoint from two given views cap-tured at different viewpoints to achieve both high quality and high efficiency. The whole process consists of three passes. The first pass recovers depth map. We formulate it as pixel labelling and propose a bisection approach to solve it. It is accomplished in log2n(n is the number of depth levels) steps,each of which involves a single graph cut computation. The second pass detects occluded pixels and reasons about their depth. It fits a foreground depth curve and a background depth curve using depth of nearby fore-ground and background pixels,and then distinguishes foreground and background pixels by minimizing a global energy,which involves only one graph cut computation. The third pass finds for each pixel in the novel view the corresponding pixels in the input views and computes its color. The whole process involves only a small number of graph cut computations,therefore it is efficient. And,visual artifacts in the synthesized view can be removed successfully by correcting depth of the occluded pixels. Experimental results demonstrate that both high quality and high efficiency are achieved by the proposed techniques.
基金Project (No.10471128) supported by the National Natural ScienceFoundation of China
文摘The Bézier curve is one of the most commonly used parametric curves in CAGD and Computer Graphics and has many good properties for shape design. Developing more convenient techniques for designing and modifying Bézier curve is an im- portant problem, and is also an important research issue in CAD/CAM and NC technology fields. This work investigates the optimal shape modification of Bézier curves by geometric constraints. This paper presents a new method by constrained optimi- zation based on changing the control points of the curves. By this method, the authors modify control points of the original Bézier curves to satisfy the given constraints and modify the shape of the curves optimally. Practical examples are also given.
文摘Since brain tumors endanger people’s living quality and even their lives, the accuracy of classification becomes more important. Conventional classifying techniques are used to deal with those datasets with characters and numbers. It is difficult, however, to apply them to datasets that include brain images and medical history (alphanumeric data), especially to guarantee the accuracy. For these datasets, this paper combines the knowledge of medical field and improves the traditional decision tree. The new classification algorithm with the direction of the medical knowledge not only adds the interaction with the doctors, but also enhances the quality of classification. The algorithm has been used on real brain CT images and a precious rule has been gained from the experiments. This paper shows that the algorithm works well for real CT data.
文摘X-ray in-line phase contrast imaging enables weakly to absorb specimens to be imaged successfully with high resolution and definition. In this paper we use computer simulation method to analyze how each parameter influences the quality of the image. It can avoid wasting unnecessary time and materials in the course of experiment to get ideal images.
基金supported by National Key Basic Research Project of China (Grant No.2011CB302400)National Natural Science Foundation of China (Grant Nos. 10971217, 60970152 and 61121062)IIE'S Research Project on Cryptography (Grant No. Y3Z0013102)
文摘An efficient algorithm is proposed for factoring polynomials over an algebraic extension field defined by a polynomial ring modulo a maximal ideal. If the maximal ideal is given by its CrSbner basis, no extra Grbbner basis computation is needed for factoring a polynomial over this extension field. Nothing more than linear algebraic technique is used to get a characteristic polynomial of a generic linear map. Then this polynomial is factorized over the ground field. From its factors, the factorization of the polynomial over the extension field is obtained. The algorithm has been implemented in Magma and computer experiments indicate that it is very efficient, particularly for complicated examples.
文摘Histone modifications have been widely elucidated to play vital roles in gene regulation and cell identity. The Roadmap Epigenomics Consortium generated a reference catalog of several key histone modifications across 〉lOOs of human cell types and tissues. Decoding these epJgenomes into functional regulatory elements is a challenging task in computational biology. To this end, we adopted a differential chromatin modification analysis framework to comprehensively determine and characterize cell type-specific regulatory elements (CSREs) and their histone modification codes in the human epigenomes of five histone modifications across 127 tissues or cell types. The CSREs show significant relevance with cell type-specific biological functions and diseases and cell identity. Clustering of CSREs with their specificity signals reveals distinct histone codes, demonstrating the diversity of functional roles of CSREs within the same cell or tissue. Last but not least, dynamics of CSREs from close cell types or tissues can give a detailed view of developmental processes such as normal tissue development and cancer occurrence.
文摘A new identity-based (ID-based) aggregate signature scheme which does not need any kind of interaction among the signers was proposed to provide partial aggregation. Compared with the existing ID-based aggregate signatures, the scheme is more efficient in terms of computational cost, Security in the random oracle model based on a variant of the computation Diflle-Hellman (CDH) problem is captured.
基金supported by the National Natural Science Foundation of China(Grant No.11175250)the Open Project Grant from the StateKey Laboratory of Theoretical PhysicsZhou X thanks the financial support of the Hundred of Talents Program in Chinese Academy of Sciences
文摘An efficient novel algorithm was developed to estimate the Density of States(DOS) for large systems by calculating the ensemble means of an extensive physical variable, such as the potential energy, U, in generalized canonical ensembles to interpolate the interior reverse temperature curve β_s(U)=SU/U, where S(U) is the logarithm of the DOS. This curve is computed with different accuracies in different energy regions to capture the dependence of the reverse temperature on U without setting prior grid in the U space. By combining with a U-compression transformation, we decrease the computational complexity from O(N3/2) in the normal Wang Landau type method to O(N1/2) in the current algorithm, as the degrees of freedom of system N. The efficiency of the algorithm is demonstrated by applying to Lennard Jones fluids with various N, along with its ability to find different macroscopic states, including metastable states.