An approach of using molinspiration calculations and molecular docking on PBPs (penicillin-binding proteins) and certain β-lactamases is employed to predict the molecular properties, bioactivity and resistance of n...An approach of using molinspiration calculations and molecular docking on PBPs (penicillin-binding proteins) and certain β-lactamases is employed to predict the molecular properties, bioactivity and resistance of newer and reference cephalosporins. The previously synthesized cephalosporins 1-8 and reference cephalosporins were subjected to extensive evaluations by calculating the molecular properties, drug-likeness scores on the bases of Lipinski's rule and bioactivity prediction using the method of molinspiration web-based software. The TPSA (topological polar surface area), OH-NH interactions, n-violation and the molinspiration Log partition coefficient (miLogP) values were also calculated. The investigated cephalosporins were subjected to molecular docking study on PBPs (lpyy) and on β-lactamases produced by S. aureus, K. pneumonia, E. coil and P. auroginosa using 1-click-docking website. Molecular properties of 1-8 recorded higher "FPSA than cephalexin and were lower than the reference cephalosporins and do not fulfill the requirements for Lipinski's rule. Bioactivities of 1-8 were predicted to be less and their docking scores on PBPs were comparable to those of the reference cephalosporins, particularly ceftobiprole. The references recorded various docking scores on the above β-lactamases and as expected, cefiobiprole recorded the lowest scores on all β-lactarnases. Cephalosporins 1-8 recorded various docking scores on β-lactamases. Molecular docking studies on PBPs and β-lactamases are considered as very useful, reliable and practical approach for predicting the bioactivity scores and to afford some information about the stability and selectivity of the newly proposed cephalosporins against β-lactamases of certain pathogenic microbes, such as P. auroginosa and MRSA, by recording the relative docking scores in comparison with those of reference cephalosporins.展开更多
文摘蛋白质组学的兴起带动了质谱技术的快速发展,而质谱技术的进步则拓宽了蛋白质组学研究问题的广度.最近10年内,肽段或完整蛋白质在质谱仪中的裂解技术——电子捕获裂解(electron capture dissociation,ECD)与电子转运裂解(electron transfer dissociation,ETD)逐渐发展起来.ECD和ETD在蛋白质组学中的应用,特别是在蛋白质的翻译后修饰鉴定和"自顶而下(Top-down)"的完整蛋白质裂解研究中已经展示出了诱人的前景.对ECD和ETD的基本原理、质谱特点、仪器实现、数据解析算法与软件开发,以及在蛋白质组学中的应用进展等方面进行了比较系统全面的阐述,并对当前的研究问题、面临的技术挑战与未来的发展趋势等方面作了深入剖析.
文摘An approach of using molinspiration calculations and molecular docking on PBPs (penicillin-binding proteins) and certain β-lactamases is employed to predict the molecular properties, bioactivity and resistance of newer and reference cephalosporins. The previously synthesized cephalosporins 1-8 and reference cephalosporins were subjected to extensive evaluations by calculating the molecular properties, drug-likeness scores on the bases of Lipinski's rule and bioactivity prediction using the method of molinspiration web-based software. The TPSA (topological polar surface area), OH-NH interactions, n-violation and the molinspiration Log partition coefficient (miLogP) values were also calculated. The investigated cephalosporins were subjected to molecular docking study on PBPs (lpyy) and on β-lactamases produced by S. aureus, K. pneumonia, E. coil and P. auroginosa using 1-click-docking website. Molecular properties of 1-8 recorded higher "FPSA than cephalexin and were lower than the reference cephalosporins and do not fulfill the requirements for Lipinski's rule. Bioactivities of 1-8 were predicted to be less and their docking scores on PBPs were comparable to those of the reference cephalosporins, particularly ceftobiprole. The references recorded various docking scores on the above β-lactamases and as expected, cefiobiprole recorded the lowest scores on all β-lactarnases. Cephalosporins 1-8 recorded various docking scores on β-lactamases. Molecular docking studies on PBPs and β-lactamases are considered as very useful, reliable and practical approach for predicting the bioactivity scores and to afford some information about the stability and selectivity of the newly proposed cephalosporins against β-lactamases of certain pathogenic microbes, such as P. auroginosa and MRSA, by recording the relative docking scores in comparison with those of reference cephalosporins.